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Abstract

We study competitive equilibria in generalized matching problems. We show that, if

there is a competitive matching, then it is unique and the core is a singleton consisting

of the competitive matching. That is, a singleton core is necessary for the existence of

competitive equilibria. We also show that a competitive matching exists if and only if

the matching produced by the top trading cycles algorithm is feasible, in which case it is

the unique competitive matching. Hence, we can use the top trading cycles algorithm to

test whether a competitive equilibrium exists and to construct a competitive equilibrium

if one exists. Lastly, in the context of bilateral matching problems, we compare the

condition for the existence of competitive matchings with existing sufficient conditions

for the existence or uniqueness of stable matchings and show that it is weaker than the

existing conditions.

Keywords: matching, competitive equilibrium, core, top trading cycles algorithm.

JEL Classification: C78, D51.

1 Introduction

Competitive equilibrium and the core are two of the most important concepts in economics.

The existence and uniqueness of competitive equilibrium and core allocations and the rela-

tionship between the two have been studied extensively in various settings including match-

ing markets. In their pioneering work, Gale and Shapley (1962) introduce two classes of

matching problems called marriage problems and roommate problems and study the core

(or stable matchings) of these problems. They show that any marriage problem has a

nonempty core while a roommate problem may have an empty core. Moulin (1995, Ch.

∗School of Economics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea (e-mail:
jaeok.park@yonsei.ac.kr, phone: +82-2-2123-6572, fax: +82-2-2123-8638)
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3.3) applies the concept of competitive equilibrium to marriage problems and provide two

examples to demonstrate that a (unique) core matching in a marriage problem may or

may not be interpreted as a competitive allocation. Shapley and Scarf (1974) consider an-

other class of matching problems called housing markets and show that the (weak) core is

nonempty and that there is a competitive allocation in the core. Later Roth and Postle-

waite (1977) sharpen Shapley and Scarf’s (1974) result by showing that, when agents have

strict preferences, the (strong) core is a singleton which consists of the unique competitive

allocation.

To sum up the discussion in the opening paragraph, while a tight connection between

competitive equilibria and the core of housing markets was established several decades

ago, it is yet to be seen when there exists a competitive equilibrium and how competitive

allocations are related to core matchings in marriage and roommate problems. This paper

aims to fill this gap in the literature by investigating these questions. To this end, we study

competitive equilibria in generalized matching problems, which are introduced by Sönmez

(1996) and include marriage and roommate problems and housing markets as special cases.

By taking this approach, we can see clearly how the existing result on competitive equilibria

and the core of housing markets in Roth and Postlewaite (1977) generalizes to a broader

context and what features of housing markets are crucial in obtaining their result.

Talking about competitive equilibria of marriage or roommate problems may sound un-

natural or inappropriate, as we need to price people and let them purchase each other (see

Roth, 2007, for related arguments). However, as pointed out in Moulin (1995), we can

interpret marriage and roommate problems as exchange economies in which each individual

owns an indivisible good and trades are restricted to be bilateral. With this interpreta-

tion, a price mechanism is no less applicable to marriage and roommate problems than to

housing markets. Studying competitive equilibria of matching problems is important from

both a theoretical and practical point of view. The core can be considered as the set of

outcomes that can arise from cooperative agreement, and since Edgeworth (1881) it has

been examined whether the same outcomes can be obtained with decentralized price-taking

behavior. Hence, it is theoretically meaningful to investigate whether the equivalence holds

in widely-studied matching models. If we find that a competitive allocation exists and it

coincides with a core outcome, it has practical implications. We can endow agents with

fiat money or tokens and let them trade their goods to achieve a cooperative outcome in

a decentralized fashion. Furthermore, we can attempt to design a tâtonnement mechanism

to achieve the same outcome as centralized (preference-reporting) mechanisms, and such a

tâtonnement mechanism may provide an informationally efficient process to obtain a core

allocation.

In a generalized matching problem, each agent is endowed with one indivisible good
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and has strict preferences on a subset of the goods held by all agents. A matching assigns

each agent one of the goods he values in a way that no good is allocated to more than one

agent, and the set of feasible matchings is specified exogenously (for example, in marriage

and roommate problems, only bilateral matchings are feasible). A generalized matching

problem can be interpreted as an exchange economy where each agent has a unit supply

of his good and demands one of the available goods, while feasible allocations or trades

are described by feasible matchings. Using this interpretation, we can define competitive

equilibria of generalized matching problems in a natural way. At a competitive equilibrium,

each agent’s endowment is priced, and each agent is assigned the most preferred good among

those he can afford given the prices. The market clearing conditions are taken care of by

requiring the allocation to be a feasible matching. We say that a matching is competitive

if it constitutes a competitive equilibrium together with a supporting price vector.

We first show that every competitive matching is in the core (Proposition 1), which is a

result that holds in general. As shown in Moulin (1995), a marriage problem may not have

a competitive matching. Thus, competitive equilibrium is more restrictive than the core.

We next show that, if there is a competitive matching, the core is a singleton consisting

of the competitive matching (Theorem 1). That is, a singleton core is necessary for the

existence of competitive equilibria. Also, provided that a competitive matching exists, we

have equivalence between the set of competitive matchings and the core as a singleton.

We then turn to the existence problem and prove that a competitive equilibrium exists if

and only if Gale’s top trading cycles algorithm (Shapley and Scarf, 1974) yields a feasible

matching (Theorem 2). Thus, the top trading cycles algorithm can be used to test whether

a competitive equilibrium exists and to construct a competitive matching and a supporting

price vector if one exists. This result explains the existence and uniqueness of competitive

and core matchings in housing markets as shown in Roth and Postlewaite (1977), because

every matching is feasible in housing markets (Corollary 1). In contrast, in roommate

and marriage problems where only bilateral matchings are allowed, a competitive matching

exists if and only if every top trading cycle formed at each step of the top trading cycles

algorithm has length 1 or 2 (Corollary 2). We call this condition iterative α–reducibility

as it weakens the concept of α–reducibility introduced in Alcalde (1995), and it can be

considered as a sufficient condition for the uniqueness of stable matchings in roommate and

marriage problems. We compare it with other existing sufficient conditions in the literature

and show that it is weaker than the existing ones (Propositions 2 and 3).

Singleton cores have played an important role in the matching literature. In particular,

singleton cores have been related to agents’ incentives in centralized matching mechanisms.

In marriage problems, where there can be multiple stable matchings, there is no strategy-

proof mechanism that selects a stable matching (Roth, 1982a). In contrast, in housing
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markets, where the core is a singleton, the core mechanism is strategy-proof (Roth, 1982b)

and it is the only mechanism that is Pareto-efficient, individually rational, and strategy-

proof (Ma, 1994). Sönmez (1999) considers allocation problems of indivisible goods that

include marriage problems and housing markets as subclasses, and he shows that singleton

cores are necessary to have a mechanism that is Pareto-efficient, individually rational, and

strategy-proof.1 Notice the parallel between Sönmez (1999) and this paper. We have the

negative result of the possible nonexistence of competitive matchings in marriage problems

and the positive result of the existence and uniqueness of competitive matchings in housing

markets. We consider generalized matching problems that include marriage problems and

housing markets and find that singleton cores are necessary for the existence of competitive

matchings. Hence, this paper contributes to the literature by pointing out that singleton

cores are crucial not only for centralized matching mechanisms to be nonmanipulable but

also for decentralized price mechanisms to function in matching markets. There are other

studies that relate singleton cores to strategic behavior in centralized matching mechanisms.

Ma (2002) considers college admissions problems and shows that the core is a singleton for

the reported preference profile at a Nash equilibrium in truncations in a stable mechanism.

Ehlers and Massó (2007) consider marriage problems with incomplete information and show

that truth-telling is an ordinal Bayesian Nash equilibrium in a stable mechanism if and only

if the core is a singleton for each preference profile in the support of the common belief.

In addition, the literature has provided empirical and theoretical findings that singleton

cores are ubiquitous. There is strong evidence that the core is small and often a singleton in

real-world matching problems such as hospital-resident matching (Roth and Peranson, 1999)

and school choice (Pathak and Sönmez, 2008).2 Ashlagi et al. (2015) provide theoretical

support for singleton cores by considering marriage problems with unequal numbers of

men and women and random heterogeneous preferences. They show that as the number

of agents becomes larger, unbalanced marriage problems have a unique stable matching

with high probability. Since singleton cores are only necessary but not sufficient for the

existence of competitive equilibria, matching problems with a singleton core may not have

a competitive matching. Hence, it still remains to be seen both empirically and theoretically

how likely various matching problems have a competitive matching. In an effort to address

this issue, we present numerical results on marriage problems with random preferences as

considered in Ashlagi et al. (2015). Our results show that, as there are more agents on

1Sönmez (1999) allows indifference between two distinct allocations, and in this case “essentially” single-
ton cores are necessary, where all allocations in the core are Pareto indifferent.

2Using data for five years 1991–1994 and 1996 for the thoracic surgery market, Roth and Peranson (1999)
report that there are two stable matchings in 1992 and 1993 and there is only one stable matching in 1991,
1994, and 1996. Similarly, using data for two school years 2005–2006 and 2006–2007 for Boston Public
School student admissions, Pathak and Sönmez (2008) find that there is only one stable matching in either
year at grade K2 and there are two stable matchings in either year at grade 6.
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one or both sides, it becomes less likely for a competitive matching to exist, and with 10 or

more agents on each side, it is rarely the case that a competitive matching exists. In our

model, each agent owns his personalized good, and thus the number of goods is equal to

the number of agents. When there are many agents and thus many goods, bilateral trades

are not sufficient to realize all gains from trade, prohibiting the existence of competitive

matchings.

Our work is related to studies on the core and competitive equilibria in matching mar-

kets or exchange economies with indivisibilities. Most existing work assumes that money

is available as a commodity, in contrast to our model where there is no money commodity.

Quinzii (1984) adds money to housing markets assuming that money enters agents’ utility

functions in a general way. She shows that the core is nonempty and coincides with the set

of competitive allocations.3 She also considers marriage problems with money and shows

that the core is nonempty while a competitive equilibrium may not exist. Her results sug-

gest that the main findings without money remain valid even when money is introduced.

Shapley and Shubik (1971) study the assignment game in which buyers and sellers are

matched to create surplus. Assuming quasilinear preferences in money, they show that the

core is nonempty and coincides with the set of competitive allocations. Sotomayor (2007)

extends the assignment game by considering many-to-many matching with additively sep-

arable preferences, and she compares setwise-stable payoffs with competitive equilibrium

payoffs. The key feature of the assignment game that creates the difference from marriage

problems is that agents are divided into two groups of buyers and sellers whereas in mar-

riage problems agents play the roles of a buyer and a seller at the same time. In other

words, in the assignment game agents in only one group, sellers, have endowments which

are priced, while in marriage problems all agents on both sides have endowments. Crawford

and Knoer (1981) and Kelso and Crawford (1982) extend college admissions problems by

adding money in a quasilinear way with separable and substitutable preferences, respec-

tively. They allow payment (salary) to depend on the pair of agents who are matched and

show that the core is nonempty and coincides with the set of competitive allocations. Re-

cently, Hatfield et al. (2013) study a bilateral trading network where trades are priced and

agents have quasilinear preferences in money. They show that, under fully substitutable

preferences, the set of stable outcomes (which are in the core) is essentially equivalent to

the set of competitive equilibria. The above three papers are different from ours in that

they allow match-specific, personalized prices whereas we focus on uniform prices (which is

also the case in the assignment game). Bikhchandani and Mamer (1997) analyze exchange

economies with indivisibilities where agents can consume multiple goods and have quasilin-

3Moulin (1995) shows that, if some agents own more than one indivisible good, the set of competitive
allocations may be a proper subset of the core.
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ear preferences in money. They present a necessary and sufficient condition for the existence

of competitive equilibria and link their model to that of Kelso and Crawford (1982).

The rest of this paper is organized as follows. In Section 2, we introduce generalized

matching problems and two solution concepts, the core and competitive equilibrium. In

Section 3, we study the relationship between competitive equilibria and the core as well

as the existence and uniqueness of competitive matchings. In Section 4, we compare the

necessary and sufficient condition for the existence of competitive matchings with other

sufficient conditions for the existence or uniqueness of stable matchings in the context of

bilateral matching problems. In Section 5, we conclude.

2 Generalized Matching Problems

Our model follows the model of generalized matching problems, formulated by Sönmez

(1996). Let N be a finite set of agents. For each i ∈ N , Si ⊆ N denotes the set of possi-

ble assignments for agent i, and Ri denotes agent i’s preference relation. We assume that

i ∈ Si for all i ∈ N , that is, each agent can be assigned his endowment. We assume that

the preference relation Ri of each agent i is a linear order (i.e., transitive, antisymmetric,

and total binary relation) on Si. Antisymmetry of Ri excludes indifference between distinct

assignments. Let Pi denote the strict relation associated with Ri, for all i ∈ N . A (gener-

alized) matching problem is described by the triple G = (N,S,R), where S = (Si)i∈N and

R = (Ri)i∈N .

A matching for a matching problem G = (N,S,R) is a bijection µ from N to itself such

that µ(i) ∈ Si for all i ∈ N . That is, a matching allocates to each agent one of his possible

assignments in a way that no agent’s endowment is allocated to more than one agent. For

all i ∈ N , we refer to µ(i) as the assignment of i at µ. Let M be the set of all matchings.

Let µI be the identity matching such that µI(i) = i for all i ∈ N . We specify a subset M f

of M as the set of feasible matchings. We require that µI ∈M f .

We study two solution concepts of matching problems, the core and competitive equi-

librium. We first define the core. Given a matching µ ∈ M f , suppose that there exist a

coalition T ⊆ N and another matching µ′ ∈ M f such that (i) µ′(i) ∈ T for all i ∈ T , (ii)

µ′(i)Riµ(i) for all i ∈ T , and (iii) µ′(i)Piµ(i) for some i ∈ T . In this case, we say that µ′

(weakly) dominates µ via T and that T blocks µ. A matching µ ∈ M f is in the (strong)

core of the matching problem G = (N,S,R) if it is not dominated by any matching.

We now define competitive equilibria. In the competitive framework for matching prob-

lems, agents’ endowments are priced and each agent chooses the most preferred assign-

ment among affordable ones. Let p ∈ RN+ be a price vector, where pi denotes the price

of agent i’s endowment for all i ∈ N . An agent i’s budget set given the price vector p
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is the set of assignments that are possible and affordable for agent i and is denoted by

Bi(p) = {j ∈ Si : pj ≤ pi}. Note that each agent can afford his own endowment regard-

less of the prices, i.e., i ∈ Bi(p) for all p ∈ RN+ , for all i ∈ N . An agent i’s demand

set given the price vector p consists of optimal assignments in his budget set and is de-

noted by Di(p). That is, Di(p) is the set of maximal elements of Bi(p) with respect to

Ri. Since Bi(p) is nonempty and Ri is a linear order, Di(p) is a singleton for every p. A

pair (p, µ) ∈ RN+ ×M f of a price vector and a matching is a competitive equilibrium of

the matching problem G = (N,S,R) if µ(i) ∈ Di(p) for all i ∈ N . Note that the market

clearing (or feasibility) conditions are taken care of by requiring µ to be a feasible matching.

A price vector p supports a matching µ if (p, µ) is a competitive equilibrium. A matching

µ is competitive if there exists a price vector p that supports µ.

As noted by Sönmez (1996), subclasses of generalized matching problems include housing

markets (Shapley and Scarf, 1974) and roommate and marriage problems (Gale and Shapley,

1962). If Si = N for all i ∈ N and M f = M , we have a housing market. We say that a

matching µ ∈M is bilateral if µ(µ(i)) = i for all i ∈ N . That is, at a bilateral matching, if

agent i is assigned agent j’s endowment, agent j should be assigned agent i’s endowment.

In other words, at a bilateral matching, agents are matched into pairs or remain single. Let

M b be the set of all bilateral matchings. We refer to a matching problem with M f = M b

as a bilateral matching problem. Roommate and marriage problems are special cases of

bilateral matching problems. If Si = N for all i ∈ N and M f = M b, we have a roommate

problem. If N can be partitioned into two nonempty disjoint sets M and W (sets of men

and women), Sm = W ∪{m} for all m ∈M , Sw = M ∪{w} for all w ∈W , and M f = M b,

we have a marriage problem.

In bilateral matching problems, it is common to use stability as a solution concept.

Agent j is acceptable to agent i if agent i prefers agent j’s endowment to his own (i.e.,

jPii). An agent i blocks the matching µ if he is matched with an unacceptable agent (i.e.,

iPiµ(i)). A pair (i, j) of distinct agents blocks the matching µ if agents i and j prefer

each other’s endowment to their assignments at µ (i.e., jPiµ(i) and iPjµ(j)). A matching

is stable if it is not blocked by any agent or any pair. The core of a bilateral matching

problem coincides with the set of stable matchings, as any blocking coalition should involve

a blocking agent or pair.

3 Properties of Competitive Matchings

In this section, we study the properties of competitive equilibria of generalized matching

problems. We consider a fixed matching problem G = (N,S,R) in this section, and thus

we will not refer to it in our results. Given a matching µ ∈M , a subset C ⊆ N of agents
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is called a trading cycle at µ if (i) µ(i) ∈ C for all i ∈ C, and (ii) there is no proper subset

C ′ of C with the property (i). Since µ is a bijection, we can express a trading cycle C as

{i, µ(i), µ2(i), . . . , µK−1(i)} for any i ∈ C, where K = |C|, µ1 = µ, and µk+1 = µ◦µk for all

k = 1, 2, . . .. Since the sequence (i, µ(i), µ2(i), . . . , µK−1(i)) forms a cycle (i.e., µK(i) = i)

where i obtains the endowment of i′ = µ(i), i′ obtains the endowment of i′′ = µ2(i), and

so on, we adopt the name trading cycles and sometimes use the sequence to represent

the trading cycle. Note that, if µ(i) = i, the singleton set {i} forms a trading cycle. A

matching µ ∈ M partitions uniquely the set of agents into trading cycles at µ.4 Hence,

given a matching µ, each agent belongs to exactly one trading cycle at µ, and we denote

the trading cycle at µ containing i by Cµi . In the following lemma, we provide simple

observations on price vectors supporting a given matching.

Lemma 1. Let µ ∈M f be a feasible matching. Then a price vector p ∈ RN+ supports µ if

and only if for all i ∈ N , (i) pi = pj for all j ∈ Cµi and (ii) pi < pj for all j ∈ Si such that

jPiµ(i).

Proof. (⇒) Suppose that p supports µ. Choose any i ∈ N . We can express Cµi as

{i0, i1, i2, . . . , iK−1} where K = |Cµi |, i0 = i, ik = µk(i) for all k = 1, . . . ,K − 1, and

µK(i) = i. Since ik+1 = µ(ik) ∈ Bik(p), we have pik ≥ pik+1
for all k = 0, . . . ,K − 1. Since

i0 = iK , this implies pi0 = pi1 = · · · = piK−1 . Hence, pi = pj for all j ∈ Cµi . Choose any

j ∈ Si such that jPiµ(i). Suppose that pj ≤ pi. Then j ∈ Bi(p), and µ(i) is not an optimal

assignment in agent i’s budget set, a contradiction. Hence, pj > pi.

(⇐) Suppose that, for all i ∈ N , (i) pi = pj for all j ∈ Cµi and (ii) pi < pj for all j ∈ Si
such that jPiµ(i). Choose any i ∈ N . Since i and µ(i) belong to the same trading cycle

at µ, we have pi = pµ(i). Since µ(i) ∈ Si, µ(i) is in agent i’s budget set. Moreover, since

pj > pi for all j ∈ Si such that jPiµ(i), µ(i) is optimal for agent i among assignments in

his budget set. Hence, p supports µ.

In order for a price vector to support a given matching, the prices of all agents in a

trading cycle should be equal. This is because each agent’s endowment should be in the

budget set of the preceding agent along the cycle, which is possible only when all the

agents in the cycle have the same price. Moreover, all assignments that are preferred to an

agent’s assignment at the matching should be outside of the agent’s budget set. These two

properties are not only necessary but also sufficient for a price vector to support a given

matching. Note that it does not matter whether those that are less preferred to an agent’s

assignment belong to the agent’s budget set or not. In the following proposition, we study

the relationship between competitive matchings and the core.

4Since a matching can be considered as a permutation on a finite set, this result follows from the cycle
decomposition theorem for permutations (see, for example, Hungerford, 1974, Theorem 6.3, Ch. I).
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Proposition 1. Every competitive matching is in the core.

Proof. Suppose that µ ∈ M f is a competitive matching with supporting price vector p.

Suppose to the contrary that µ is not in the core. Then there exist a coalition T ⊆ N and

a matching µ′ ∈M f such that µ′ dominates µ via T . Since µ′(i)Riµ(i) and µ′(i) ∈ Si for

all i ∈ T , we have pµ′(i) ≥ pµ(i) = pi for all i ∈ T by Lemma 1. Also, since µ′(i)Piµ(i) for

some i ∈ T , we have pµ′(i) > pµ(i) = pi for some i ∈ T . Summing these inequalities over

i ∈ T , we obtain
∑

i∈T pµ′(i) >
∑

i∈T pi. However, since µ′(i) ∈ T for all i ∈ T and µ′ is a

bijection, we should have
∑

i∈T pµ′(i) =
∑

i∈T pi, which is a contradiction.

Proposition 1 shows that the set of competitive matchings is a subset of the core. Thus,

matchings in the core are candidates for competitive matchings, and if the core is empty,

there is no competitive matching. In the following theorem, we study further the relationship

between competitive matchings and the core assuming that a competitive matching exists.

Theorem 1. If there exists a competitive matching, then the core is a singleton consisting

of the competitive matching.

Proof. Suppose that µ ∈ M f is a competitive matching with supporting price vector p.

Let K be the number of distinct prices in p. Note that K is finite with K ≤ |N |. We

can partition N as {N1, . . . , NK}, where Nk is the set of agents whose prices are the kth

highest for all k = 1, . . . ,K. By Lemma 1, Nk can be partitioned into one or more trading

cycles at µ for all k = 1, . . . ,K.

By Proposition 1, µ is in the core. Choose any matching µ′ ∈M f in the core. Choose

any trading cycle C ⊆ N1 at µ and any j ∈ C. Suppose that µ′(j) 6= µ(j). Since agents in

N1 can afford any assignment, µ(i)Rii
′ for all i′ ∈ Si, for all i ∈ C. Hence, µ(i)Riµ

′(i) for

all i ∈ C and µ(j)Pjµ
′(j). Since C is a trading cycle at µ, we have µ(i) ∈ C for all i ∈ C.

Hence, µ dominates µ′ via C, a contradiction. It follows that µ′ = µ on C, and thus on N1.

Now choose any trading cycle C ⊆ N2 at µ and any j ∈ C. Suppose that µ′(j) 6= µ(j).

Since agents in N2 can afford any assignment other than those in N1, µ(i)Rii
′ for all

i′ ∈ Si \ N1, for all i ∈ C. Also, since µ′ = µ on N1, µ′(i) /∈ N1 for all i ∈ C. Hence,

µ(i)Riµ
′(i) for all i ∈ C and µ(j)Pjµ

′(j). Again, µ dominates µ′ via C, a contradiction. It

follows that µ′ = µ on C, and thus on N2.

Repeating this argument, we can show that µ′ = µ on Nk, for all k = 1, . . . ,K. Thus,

µ′ = µ, and there cannot be any other matching than µ in the core.

Combined with Proposition 1, Theorem 1 shows that, if the set of competitive matchings

is nonempty, it coincides with the core and contains exactly one matching. Thus, there

can be at most one competitive matching. Theorem 1 also shows that a singleton core

is necessary for the existence of competitive equilibria. However, as shown in Example 2
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below, a singleton core is not sufficient for the existence of competitive equilibria. Below

we present two examples of marriage problems to illustrate that a marriage problem may

or may not have a competitive matching.

Example 1. Consider a marriage problem with M = {1, 2}, W = {3, 4}, and preferences

P1 : 3, 4, 1, P2 : 3, 4, 2, P3 : 1, 2, 3, P4 : 2, 1, 4. It can be checked that the marriage problem

has a unique stable matching µ = {(1, 3), (2, 4)}.5 At the stable matching, every agent

except for agent 2 obtains his or her favorite partner. Hence, any price vector p satisfying

p1 = p3 > p2 = p4 supports µ, and thus µ is a competitive matching.

Example 2. Consider a marriage problem with M = {1, 2}, W = {3, 4}, and preferences

P1 : 4, 3, 1, P2 : 3, 4, 2, P3 : 1, 3, 2, P4 : 2, 4, 1. In this marriage problem, each woman has

only one acceptable man. Thus, the stable matching is unique and assigns each woman

to her acceptable man, i.e., µ = {(1, 3), (2, 4)}. The stable matching µ is not competitive

because there is no price vector supporting µ. To see why, suppose that there is one, say

p. By Lemma 1, we have p1 = p3 and p2 = p4. Also, 4P1[3 = µ(1)] and 3P2[4 = µ(2)]

imply p4 > p1 and p3 > p2, respectively. Combining these equalities and inequalities yields

a contradiction.

Two questions arise from Theorem 1: When does a competitive matching exist? If a

competitive matching exists, how can we find the unique competitive matching? Our next

result (Theorem 2) addresses these questions. In answering these questions, the top trading

cycles algorithm developed by David Gale and introduced in Shapley and Scarf (1974) plays

an important role. Although the top trading cycles algorithm is originally developed for

housing markets, it can be applied to generalized matching problems without modification,

as described below.6

• Step 1. Each agent points to the owner of the good he prefers most. Since there are

a finite number of agents, there exists at least one cycle of agents pointing to one

another. Each agent in a cycle is assigned the endowment of the agent he points to

and exits from the market. If there is at least one remaining agent, proceed to the

next step. Otherwise, stop.

In general, at:

• Step l. Each remaining agent points to the owner of the good he prefers most among

the remaining goods. Each agent in a cycle is assigned the endowment of the agent he

points to and exits from the market. If there is at least one remaining agent, proceed

to the next step. Otherwise, stop.

5Recall that a matching can be represented as the collection of trading cycles at the matching.
6See Moulin (1995, Sec. 3.2) and Abdulkadiroğlu and Sönmez (2013, Sec. 3.1) for a description of the

top trading cycles algorithm and its properties for housing markets.
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Consider an agent who remains in the market at a step. Since he has strict preferences

and has an option to choose his own endowment, there exists a unique good he prefers most

among those available at that step. Hence, the choice of each remaining agent at any step

is determined uniquely. Since each remaining agent points to only one agent, each agent

belongs to at most one cycle. There is at least one cycle at each step, while there can

be multiple cycles formed at a step. In case of multiple cycles, the algorithm eliminates

agents in all of them simultaneously. Thus, at each step exiting agents are existent and

determined uniquely with their assignments. Also, since there are a finite number of agents,

the algorithm must terminate after at most |N | steps. Combining agents’ assignments at

the end, we obtain a unique matching µ ∈M produced by the algorithm.

Let T l be the set of agents who exit at Step l of the top trading cycles algorithm, for

all l = 1, . . . , L, where L denotes the total number of steps. Then the above argument

shows that the algorithm also produces a unique partition {T 1, . . . , TL} of N . Given a

matching problem G = (N,S,R), a subset Ñ ⊆ N of agents defines a subproblem where

agent i’ preferences Ri are restricted to Si ∩ Ñ for all i ∈ Ñ . We say that a sequence

(i0, i1, . . . , iK−1) or a set {i0, i1, . . . , iK−1} is a top trading cycle for the subproblem Ñ if

ik+1 is ik’s most preferred assignment among those in Ñ for all k = 0, . . . ,K − 1 where

iK = i0. By the construction of the algorithm, T l consists of one or more top trading cycles

for the subproblem N \ (∪k≤l−1T k), for all l = 1, . . . , L.

Let us illustrate how the top trading cycles algorithm works with the two previous

examples. First, consider the marriage problem in Example 1. At Step 1, both agents 1

and 2 point to agent 3, agent 3 points to agent 1, and agent 4 points to agent 2. Here we

obtain a top trading cycle (1, 3) for N = M ∪W , and agents 1 and 3 are matched and exit

(i.e., T 1 = {1, 3}). At Step 2, the remaining agents, agents 2 and 4, point to each other. So

they form a top trading cycle (2, 4) forN\T 1, are matched, and exit (i.e., T 2 = {2, 4}). Since

there is no remaining agent, the algorithm terminates after Step 2, yielding the matching

µ = {(1, 3), (2, 4)}. Next, consider the marriage problem in Example 2. At Step 1, agent 1

points to agent 4, agent 2 points to agent 3, agent 3 points to agent 1, and agent 4 points

to agent 2. We obtain a top trading cycle (1, 4, 2, 3) for N = M ∪W , and all the agents

exit (i.e., T 1 = {1, 2, 3, 4}). The algorithm terminates after Step 1, yielding the matching

µ = {(1, 4, 2, 3)}.
The matching obtained from the top trading cycles algorithm does not need to be

feasible, and whether it is feasible or not depends on the specification of M f . For instance,

the resulting matching in Example 1 is bilateral and thus feasible, whereas it is not the case

in Example 2. The following theorem shows that a competitive equilibrium exists exactly

when the matching produced by the top trading cycles algorithm is feasible. This result

is consistent with our previous observation that the marriage problem in Example 1 has a
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competitive matching while that in Example 2 does not.

Theorem 2. There exists a competitive matching if and only if the matching µ obtained

from the top trading cycles algorithm is feasible (i.e., µ ∈ M f ), in which case µ is the

unique competitive matching.

Proof. (⇐) Suppose that the top trading cycles algorithm yields a feasible matching µ ∈
M f . Let {T 1, . . . , TL} be the partition of N that we obtain from the top trading cycles

algorithm. Define a price vector p ∈ RN+ by pi = L − l if i ∈ T l. Choose any i ∈ N . Since

the trading cycle Cµi at µ is formed as a top trading cycle at some step of the algorithm,

all the agents in Cµi exit at the same step, and we have pi = pj for all j ∈ Cµi . Choose any

j ∈ Si such that jPiµ(i). Since agent i points to µ(i) at the step when he exits, agent j

should not be available at that step. Thus, pj > pi. By Lemma 1, (p, µ) is a competitive

equilibrium, and µ is the unique competitive matching.

(⇒) Suppose that there exists a (unique) competitive matching µ ∈M f with supporting

price vector p. Let {C1, . . . , CK} be the partition of N consisting of trading cycles at µ.

By Lemma 1, agents in a trading cycle have the same price. Let qk be the common price

of agents in trading cycle Ck, for all k = 1, . . . ,K. Without loss of generality, we assume

that q1 ≥ q2 ≥ · · · ≥ qK . For each agent i ∈ C1, µ(i) is agent i’s most preferred assignment

among those in N . Hence, C1 is a top trading cycle for N , and each agent i ∈ C1 obtains

µ(i) and exits from the market at Step 1 of the top trading cycles algorithm. For each agent

i ∈ C2, µ(i) is agent i’s most preferred assignment among those in N \ C1. If no agent

i ∈ C2 prefers an assignment in C1 to µ(i), C2 is also a top trading cycle for N and agents

in C2 exit at Step 1. Otherwise, C2 is a top trading cycle for N \C1 and agents in C2 exit

at Step 2. In general, suppose that we have proceeded with the top trading cycles algorithm

to eliminate trading cycles up to Ck−1. Let l be the number of the step at which the trading

cycle Ck−1 is eliminated. Then we have the sets T 1, . . . , T l where T j is the set of agents

who exit at Step j, for j = 1, . . . , l. Consider the trading cycle Ck. For each agent i ∈ Ck,
µ(i) is agent i’s most preferred assignment among those in N \ (∪j≤k−1Cj). If no agent

i ∈ Ck prefers an assignment in T l to µ(i), Ck is a top trading cycle for N \ (∪j≤l−1T j)
and agents in Ck exit at Step l, in which case we add agents in Ck to T l. Otherwise, Ck

is a top trading cycle for N \ (∪j≤lT j) and agents in Ck exit at Step l + 1, in which case

we set T l+1 = Ck. As we proceed in this way, we can see that each T j is the union of one

or more trading cycles at µ with consecutive indexes, while for every j′ < j, T j
′

contains

trading cycles with lower indexes than those in T j . Also, each agent i obtains assignment

µ(i) when he exits, and thus the top trading cycles algorithm yields the matching µ.

A competitive equilibrium exists exactly when the top trading cycles algorithm yields a

feasible matching. If a competitive equilibrium exists, we can find the unique competitive
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matching using the top trading cycles algorithm. We can also find a supporting price vector

by assigning a higher price to agents in a top trading cycle formed at an earlier step of the

algorithm. The same construction of a supporting price vector can be found in Shapley and

Scarf (1974, Sec. 6). This construction guarantees that each agent’s assignment is the most

preferred among affordable choices. It is straightforward to see that the order of prices in

a supporting price vector is uniquely determined (in other words, a supporting price vector

is unique in the ordinal sense) if and only if there is exactly one top trading cycle at each

step of the top trading cycles algorithm.

Theorem 2 generalizes the existing result on housing markets that the unique com-

petitive matching can be obtained by applying the top trading cycles algorithm (Roth and

Postlewaite, 1977). The difference is that a competitive equilibrium always exists in housing

markets while a competitive equilibrium may not exist in generalized matching problems.

The matching produced by the top trading cycles algorithm can be considered as a Pareto-

efficient allocation when there is no restriction on possible trades. Hence, Theorem 2 can be

interpreted as follows: A competitive equilibrium exists when there is no efficiency loss due

to restrictions on trades imposed by M f . This suggests that price mechanisms work better

when there are less restrictions on possible trades. We can see from Theorem 2 that, as the

set M f of feasible matchings becomes more restrictive, the chance of having a competitive

equilibrium gets smaller. In contrast, as we expand M f , it becomes more likely that a

competitive equilibrium exists. In the extreme case where every matching is feasible, i.e,

M f = M , we always have a competitive equilibrium.

Corollary 1. If M f = M , then the core is a singleton and the matching in the core is the

unique competitive matching.

Corollary 1 covers housing markets, which have Si = N for all i ∈ N , while it holds

regardless of S. Thus, the crucial feature of housing markets that guarantees the existence

of competitive equilibria is that there is no restriction on feasible trades.7

Now we study the implications of Theorem 2 for bilateral matching problems, which

include roommate and marriage problems. Note that every trading cycle at a bilateral

matching has length 1 or 2.8 Thus, Theorem 2 can be rewritten as follows in the context

of bilateral matching problems.

7There is a variant of the top trading cycles algorithm adapted for school choice problems where students
have preferences over schools and schools have capacities and priorities over students. Roughly speaking, the
top trading cycles algorithm for school choice problems allows students who have the highest priority at some
school to trade their priorities with each other (see Abdulkadiroğlu and Sönmez, 2003, for a description of the
algorithm and its properties). As in housing markets, there is no restriction on feasible trades of priorities,
and thus the algorithm always yields a feasible matching.

8We define the length of a cycle as the number of distinct elements in the cycle.
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Corollary 2. Suppose that M f = M b. Then a competitive equilibrium exists if and only if

every top trading cycle obtained at each step of the top trading cycles algorithm has length

1 or 2.

If we obtain a top trading cycle of length 3 or more at some step of the top trading cycles

algorithm, as in Example 2, the bilateral matching problem does not have a competitive

equilibrium. In other words, a bilateral matching problem has a competitive equilibrium

when bilateral trades are sufficient to realize all gains from trade. For marriage problems,

Theorem 2 also implies the following: a competitive equilibrium exists if and only if the

top trading cycles algorithm yields the same matching as (either version of) the deferred

acceptance algorithm.9

4 Comparison of Conditions in Bilateral Matching Problems

4.1 Roommate Problems

Our analysis in Section 3 shows that, if a competitive matching exists in a roommate

problem, then it is the unique stable matching. Hence, we can regard the existence of

competitive matchings as a sufficient condition for the existence and uniqueness of stable

matchings. In the literature, several studies have proposed various conditions on agents’

preferences for the existence and uniqueness of stable matchings in roommate problems.

In this subsection, we study the relationships between our condition based on competitive

equilibria and some existing conditions.

We first introduce some concepts that are used to state various conditions. We refer

to top trading cycles of length 1 and 2 as top trading singles and pairs, respectively.10 A

ring in a matching problem is an ordered list of agents (i1, i2, . . . , iK) with K ≥ 3 such that

ik+1Pikik−1Pikik (subscripts modulo K) for all k = 1, . . . ,K. A cycle in a matching problem

is an ordered list of agents (i1, i2, . . . , iK) with K ≥ 3 such that ik+1Pikik−1 (subscripts

modulo K) for all k = 1, . . . ,K. Below we present several conditions on agents’ preferences.

Definition 1. (i) A matching problem is α–reducible if there is a top trading single or pair

for every subproblem.11

9A related, though different, result can be found in Kesten (2006), who shows that, in priority-based
allocation problems, the top trading cycles algorithm (adapted to the context as for school choice) and the
(agent-proposing) deferred acceptance algorithm yield the same matching if and only if the priority structure
is acyclic.

10Alternative names for top trading pairs in the literature include “pairs of P -reciprocal agents” in Alcalde
(1995), “fixed pairs” in Clark (2006), and “top-top matches” in Niederle and Yariv (2009).

11Alcalde’s (1995) definition of α–reducibility considers only top trading pairs but not singles because
he assumes that there are an even number of agents and that every agent is acceptable to all the others.
Niederle and Yariv (2009) use the top-top match property instead of α–reducibility for the same meaning in
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(ii) A matching problem is iteratively α–reducible if every top trading cycle obtained at

each step of the top trading cycles algorithm is a top trading single or pair.

(iii) A matching problem satisfies the no odd rings condition if there is no ring (i1, i2, . . . , iK)

such that K is odd.

(iv) A matching problem has acyclic preferences if there is no cycle.

(v) A matching problem satisfies the symmetric utilities hypothesis if there exists a

symmetric function u : N2 → R representing agents’ preferences, that is, u(i, j) = u(j, i)

for all i, j ∈ N and u(i, j) > u(i, j′) if and only if jPij
′ for all i, j, j′ ∈ N .

Note that the properties in Definition 1 apply to any matching problem G = (N,S,R)

regardless of the set M f of feasible matchings. Below we summarize the implications of

the above properties for roommate problems.12 Tan (1991) shows that there exists a stable

matching if and only if there is a “stable partition” without odd rings.13 Chung (2000) shows

that the no odd rings condition is sufficient for the existence of stable matchings. Any ring

in a marriage problem must have an even length, and thus the no odd rings condition is

satisfied for any marriage problem, which explains the existence result established by Gale

and Shapley (1962).14 Rodrigues-Neto (2007) proves that a matching problem satisfies the

symmetric utilities hypothesis if and only if it has acyclic preferences, in which case there

is a unique stable matching. Alcalde (1995) shows that α–reducibility is sufficient for the

uniqueness of stable matchings. The idea behind the uniqueness result is that, if there

is a pair of agents who prefer each other most, they must be matched under any stable

matching, and we can apply this argument iteratively. By the same logic, we can show that

iterative α–reducibility implies the uniqueness of stable matchings, which is also confirmed

by Theorem 1 and Corollary 2. In the following proposition, we compare the conditions in

Definition 1.

Proposition 2. (i) If a matching problem is α-reducible, then it is iteratively α–reducible.

If a matching problem has acyclic preferences, then it is α–reducible. If a matching problem

has acyclic preferences, then it satisfies the no odd rings condition. The converses of the

three implications do not hold.

(ii) The no odd rings condition is neither stronger nor weaker than (iterative) α–

reducibility, while there is a matching problem that satisfies both conditions.

the context of marriage problems. α–reducibility corresponds to the top-coalition property in Banerjee et al.
(2001) who consider a more general model than bilateral matching problems. Note that, in bilateral matching
problems where agents form coalitions of size one or two, there is no difference between the top-coalition
property and the weak top-coalition property of Banerjee et al. (2001).

12See Gudmundsson (2014) for an excellent review of various conditions for the existence of stable match-
ings in roommate problems allowing for weak preferences.

13See Tan (1991) for the definition of stable partitions, which generalize stable matchings.
14As pointed out by Chung (2000, Definition 3), any marriage problem can be expressed as a roommate

problem by putting all the other agents on the same side at the bottom of each agent’s preference list.
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Figure 1: Conditions for the existence and uniqueness of stable matchings.

Proof. (i) It is clear from the definitions that α–reducibility implies iterative α–reducibility.

Suppose that the symmetric utilities hypothesis is satisfied with function u. For any sub-

problem Ñ , let (i∗, j∗) be a solution to max(i,j)∈Ñ2 u(i, j). Then {i∗, j∗} is a top trading

single or pair for the subproblem Ñ . Since the symmetric utilities hypothesis is equivalent to

acyclic preferences (Rodrigues-Neto, 2007), acyclic preferences imply α–reducibility. Since

a ring is a cycle, acyclic preferences imply the no odd rings condition. We can prove that

the converses do not hold by showing that there are matching problems belonging to areas

C, B, and F in Figure 1. This is done in the discussion on Examples 4, 3, and 7 below.

(ii) This result is proven once we show that there are matching problems belonging to

areas H, B, and A in Figure 1. This is done in the discussion on Examples 2, 3, and 1

below.

Proposition 2 shows, among others, that iterative α–reducibility is a weaker sufficient

condition for uniqueness than existing ones such as α–reducibility and acyclic preferences.15

The relationships between various conditions, including those shown in Proposition 2, are

depicted in Figure 1.

We show by example that there exists a matching problem belonging to each area

in Figure 1. First, consider the matching problem induced by the marriage problem in

Example 1. It can be checked that the matching problem has acyclic preferences, and thus

it belongs to area A. This shows that the set of matching problems with acyclic preferences

is nonempty and that the intersection of any two regions in Figure 1 is nonempty.

15The kind of weakening from α–reducibility to iterative α–reducibility is also suggested in footnote 11 of
Banerjee et al. (2001) and in Gudmundsson (2014).
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Example 3 (from Gudmundsson, 2014). Consider N = {1, 2, 3, 4, 5} and preferences P1 :

3, 2, 5, 4, 1, P2 : 4, 3, 1, 5, 2, P3 : 1, 4, 2, 5, 3, P4 : 2, 5, 3, 1, 4, P5 : 2, 1, 4, 3, 5. There is an odd

ring, (1, 2, 3, 4, 5), which is also a cycle, and it can be verified that the matching problem

is α–reducible. Hence, the problem belongs to area B. This shows that α–reducibility is

strictly weaker than acyclic preferences and not stronger than the no odd rings condition.

Example 4 (from Example 2 of Chung, 2000). Consider N = {1, 2, 3, 4} and preferences

P1 : 2, 1, 4, 3, P2 : 1, 3, 4, 2, P3 : 4, 2, 3, 1, P4 : 2, 3, 4, 1. There is an odd ring, (2, 3, 4). The

matching problem is iteratively α–reducible with T 1 = {1, 2} and T 2 = {3, 4}. However,

it is not α–reducible because there is neither a top trading single nor a top trading pair

for the subproblem Ñ = {2, 3, 4}. Hence, the problem belongs to area C. This shows that

iterative α–reducibility is strictly weaker than α–reducibility and not stronger than the no

odd rings condition.

Example 5. Consider the matching problem in Example 4 with agent 1’s preferences mod-

ified as P1 : 4, 2, 1, 3. Then (2, 3, 4) is still an odd ring, and the matching µ = {(1, 2), (3, 4)}
is the unique stable matching. However, there is neither a top trading single nor a top

trading pair for the matching problem, and thus it is not iteratively α–reducible. Hence,

the problem belongs to area D. This shows that the uniqueness of stable matchings does

not imply iterative α–reducibility.

Example 6. Consider N = {1, 2, 3, 4} and preferences P1 : 3, 2, 4, 1, P2 : 1, 3, 4, 2, P3 :

4, 1, 2, 3, P4 : 2, 3, 1, 4. There is an odd ring, (2, 3, 4). There are two stable matchings

µ = {(1, 2), (3, 4)} and µ′ = {(1, 3), (2, 4)}. Hence, the problem belongs to area E. This

shows that the existence of stable matchings does not imply uniqueness.

Example 7. Consider N = {1, 2, 3} and preferences P1 : 1, 2, 3, P2 : 2, 3, 1, P3 : 3, 1, 2.

There is no odd ring, while there is a cycle (1, 2, 3). Also, the matching problem is α–

reducible. Hence, the problem belongs to area F. This shows that the no odd rings condition

does not imply acyclic preferences.

Example 8. Consider N = {1, 2, 3, 4} and preferences P1 : 2, 1, 4, 3, P2 : 3, 1, 2, 4, P3 :

4, 1, 3, 2, P4 : 3, 4, 2, 1. There is no odd ring. The matching problem is iteratively α–

reducible with T 1 = {3, 4} and T 2 = {1, 2}. However, it is not α–reducible because there is

neither a top trading single nor a top trading pair for the subproblem Ñ = {1, 2, 3}. Hence,

the problem belongs to area G. This shows that the no odd rings condition does not imply

α–reducibility.

Consider the matching problem induced by the marriage problem in Example 2. We have

already seen that the matching problem has a unique stable matching but no competitive
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matching. Since the matching problem is a marriage problem, it satisfies the no odd rings

condition. Hence, it belongs to area H. This shows that the no odd rings condition does

not imply iterative α–reducibility.

Example 9. Consider N = {1, 2, 3, 4} and preferences P1 : 2, 4, 3, 1, P2 : 3, 1, 4, 2, P3 :

4, 2, 1, 3, P4 : 1, 3, 2, 4. There is no odd ring. There are two stable matchings µ =

{(1, 2), (3, 4)} and µ′ = {(1, 4), (2, 3)}. Hence, the problem belongs to area I. This shows

that the no odd rings condition does not imply the uniqueness of stable matchings.

Examples 2 and 7–9 also show that the strict inclusions shown in Examples 3–6 continue

to hold even when we restrict attention to the domain of the no odd rings condition.

4.2 Marriage Problems

In this subsection, we focus on marriage problems. Since all marriage problems satisfy the

no odd rings condition, we work within the region of the no odd rings condition in Figure 1,

and there exists a stable matching. In the literature, several studies have provided sufficient

conditions for the uniqueness of stable matchings in marriage problems. We first review

some of the existing conditions.

Definition 2. (i) A marriage problem satisfies the sequential preference condition (SPC)

if for each mi ∈M , wiPmiwj for all j > i, and for each wi ∈W , miPwimj for all j > i.

(ii) A marriage problem satisfies the no crossing condition (NCC) if for any i < j and

k < l, wjPmk
wi implies wjPml

wi, and mlPwimk implies mlPwjmk.

(iii) A marriage problem has aligned preferences if there exists an ordinal potential P̃ de-

fined onM×W such that wPmw
′ implies (m,w)P̃ (m,w′) andmPwm

′ implies (m,w)P̃ (m′, w).

(iv) A marriage problem has no simultaneous cycles if there are no ordered lists of men

and women (m1,m2, . . . ,mK) and (w1, w2, . . . , wK) withK ≥ 2 such that wkPmk
wk−1Pmk

mk

and mkPwk
mk−1Pwk

wk (subscripts modulo K) for all k = 1, . . . ,K.

The SPC is satisfied if men and women can be ordered so that each man (resp. woman)

prefers the woman (resp. man) with the same rank as his (resp. hers) to those with a

lower rank. Eeckhout (2000) considers marriage problems where there are equal numbers

of men and women and all men are acceptable to all women and vice versa, and he shows

that, under the SPC, the matching that pairs the man and woman with the same rank is

the unique stable matching. The NCC is satisfied if men and women can be ordered so

that if a man (resp. woman) prefers a woman (resp. man) to another one with a higher

rank than hers (resp. his), so does a man (resp. woman) with a lower rank than his (resp.

hers). Its name comes from the following property: When we position any two men and

two women along two lines according to their orderings and draw arrows representing the
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men and women’s preferred partners, these arrows cannot cross each other under the NCC.

Clark (2006) considers the same setup as in Eeckhout (2000) and shows that the NCC

is sufficient for the uniqueness of stable matchings. Niederle and Yariv (2009) show that

there exists a unique stable matching if the marriage problem has aligned preferences. A

simultaneous cycle in a marriage problem corresponds to a ring. Recently, Romero-Medina

and Triossi (2013) show that the absence of simultaneous cycles implies the uniqueness of

stable matchings.16 Note that the conditions in Definition 2 are defined in the context of

marriage problems while those in Definition 1 apply to any matching problems. In the

following proposition, we compare the conditions in Definitions 1 and 2.

Proposition 3. Consider marriage problems where there are equal numbers of men and

women and all men are acceptable to all women and vice versa.

(i) A marriage problem satisfies the SPC if and only if it is iteratively α–reducible.

(ii) A marriage problem has aligned preferences if and only if it has acyclic preferences.

A marriage problem has no simultaneous cycles if and only if it has acyclic preferences.

(iii) If a marriage problem satisfies the NCC, then it is α–reducible. The converse does

not hold. The NCC is neither stronger nor weaker than aligned preferences, while there is

a marriage problem that satisfies both conditions.

Now consider marriage problems in general.

(iv) The condition of no simultaneous cycles is neither stronger nor weaker than (iter-

ative) α–reducibility, while there is a matching problem that satisfies both conditions.

Proof. (i) Suppose that the marriage problem is iteratively α–reducible. Then at each step

of the top trading cycles algorithm, there exists at least one top trading pair. We rank these

pairs in the order they exit. If there are multiple pairs exiting at the same step, we assign

their ranks arbitrarily. Then by construction, each man (resp. woman) prefers the woman

(resp. man) with the same rank to any woman (resp. man) with a lower rank. Hence,

the SPC is satisfied. Suppose that the SPC holds. Then when we apply the top trading

cycles algorithm, the pairs (mi, wi) exit in order of their ranks, although some pairs may

exit simultaneously. Thus, the marriage problem is iteratively α–reducible.

(ii) The first statement follows from the characterization of ordinal potential games in

Voorneveld and Norde (1997), as mentioned in Niederle and Yariv (2009). Since all men

are acceptable to all women and vice versa, rings coincide with cycles. Thus, the condition

of no simultaneous cycles is equivalent to acyclic preferences.

(iii) The result that the NCC implies α–reducibility is shown in Clark (2006, Theorem

3). Consider a marriage problem where all men have the same preferences over women

16Niederle and Yariv (2009) assume that all men are acceptable to all women and vice versa while allowing
unequal numbers of men and women. Romero-Medina and Triossi (2013) allow not only unequal numbers
of men and women but also unacceptable agents.
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and vice versa. Then it can be checked that the marriage problem satisfies the NCC and

has aligned preferences. Next consider the marriage problem with M = {m1,m2,m3},
W = {w1, w2, w3}, and preferences Pmi : w1, w2, w3,mi for i = 1, 2, 3, Pw1 : m1,m2,m3, w1,

Pw2 : m2,m3,m1, w2, Pw3 : m3,m1,m2, w3. Since all men have the same preferences over

women, the marriage problem has aligned preferences, as shown by Niederle and Yariv

(2009). However, for any orderings of men and women, we can find pairs of men and women

such that a crossing occurs, and thus the NCC does not hold. This example shows that the

NCC is not weaker than aligned preferences. Since acyclic preferences, which are equivalent

to aligned preferences, imply α–reducibility, it also shows that the converse of the first

statement does not hold. Lastly, consider the marriage problem with M = {m1,m2,m3},
W = {w1, w2, w3}, and preferences Pm1 : w1, w2, w3,m1, Pmi : w2, w3, w1,mi for i = 2, 3,

Pwi : m2,m1,m3, wi for i = 1, 2, Pw3 : m3,m2,m1, w3. The marriage problem has a cycle,

(w2,m1, w1,m2, w3,m3), and thus it does not have aligned preferences. However, it can

be checked that the NCC is satisfied with the given orderings of men and women. This

example shows that the NCC is not stronger than aligned preferences.

(iv) We have seen that the marriage problem in Example 1 has acyclic preferences. Thus,

it has no simultaneous cycles and satisfies (iterative) α–reducibility. We have also seen that

the marriage problem in Example 2 is not iteratively α–reducible. Since each woman has

only one acceptable man, there is no ring. Thus, the marriage problem has no simultaneous

cycles, which shows that the condition of no simultaneous cycles is not stronger than (it-

erative) α–reducibility. Lastly, consider the marriage problem with M = {m1,m2,m3},
W = {w1, w2, w3}, and preferences Pm1 : w1, w3, w2,m1, Pm2 : w2, w1, w3,m2, Pm3 :

w3, w2, w1,m3, Pw1 : m1,m3,m2, w1, Pw2 : m2,m1,m3, w2, Pw3 : m3,m2,m1, w3. Then

the marriage problem has a ring, (m1, w3,m2, w1,m3, w2), and it can be checked that it is

α–reducible. Thus, this example shows that the condition of no simultaneous cycles is not

weaker than (iterative) α–reducibility.

Proposition 3 shows that, in the class of marriage problems considered in Eeckhout

(2000), the SPC is equivalent to iterative α–reducibility, while the NCC, aligned prefer-

ences, and the absence of simultaneous cycles are stronger than α–reducibility. Hence, the

existence of competitive equilibria can be considered as one of weaker sufficient conditions

for the uniqueness of stable matchings in marriage problems. Proposition 3 also shows that,

in general marriage problems, the absence of simultaneous cycles is different from (iterative)

α–reducibility, as mentioned in Romero-Medina and Triossi (2013).

Since singleton cores are only necessary but not sufficient for the existence of competitive

matchings, it is of interest to examine how restrictive the latter condition is relative to the

former. In Figure 2, we present numerical results to address this issue in the context of

marriage problems. We consider marriage problems in which all men are acceptable to all
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Figure 2: Frequencies of having a singleton core and a competitive matching in marriage
problems with randomly generated preferences. In (a), the numbers of men and women are
equal and varied from 2 to 20. In (b), the number of men is varied from 2 to 20 while the
number of women is fixed at 10. In (c), the number of men is varied from 2 to 40 while the
number of women is fixed at 20. For each combination of the numbers of men and women,
10,000 marriage problems are generated.
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women and vice versa and agents’ preferences are generated independently and uniformly at

random, as in Ashlagi et al. (2015). In Figure 2(a), we study balanced marriage problems

where there are equal numbers of men and women. As the numbers of men and women

increase, the frequencies of having a singleton core and a competitive matching both reduce

but the latter exhibits a faster decline. In Figure 2(b) and (c), we consider unbalanced

marriage problems where there are unequal numbers of men and women. As marriage

problems become more unbalanced, the frequency of having a singleton core increases and

approaches 1. In contrast, as the number of men increases with the number of women held

fixed, the frequency of having a competitive matching decreases to 0.

Overall, we can see that as there are more agents on one or both sides, it becomes

less likely that a competitive matching exists and that with 10 or more agents on each

side, it is very unlikely to have a competitive matching. The main reason for nonexistence

can be explained as follows. As there are more agents, they have more potential partners.

With random preferences, it becomes less likely to have two agents who prefer each other

most, and top trading cycles tend to have a length longer than two. In other words, with

many agents (and thus many goods), all gains from trade can be exploited when we allow

trades involving more than two agents, and as a result, a competitive equilibrium does not

exist when we restrict trades to be bilateral. The observations from the numerical results

suggest that, at least in marriage problems with random preferences, centralized matching

mechanisms will work more successfully than decentralized price mechanisms.

5 Conclusion

In this paper, we have studied competitive equilibria in generalized matching problems,

which include housing markets and roommate and marriage problems as special cases. We

have shown that every competitive matching is in the core and that, if there is a competitive

matching, then the core is a singleton consisting of the competitive matching. By showing

that singleton cores are necessary for the existence of competitive equilibria, we provide

another case for the importance of singleton cores in matching problems. We have further

shown that a competitive matching exists if and only if the top trading cycles algorithm

produces a feasible matching, generalizing the existing result on housing markets. Our

results are not only of theoretical interest but also of practical importance. Our results

suggest that, in matching problems where a competitive equilibrium exists, decentralized

price-taking behavior and cooperative agreement yield the same outcome. A direction for

future research is to design a price adjustment process to reach the competitive matching

and to compare its informational burden with that of centralized matching algorithms.

Finally, another direction for future research is to study large matching markets. In

22



general, large markets are known to provide a more favorable environment for the existence

of competitive equilibria and equivalence between the core and the set of competitive al-

locations. In our model, existence guarantees equivalence. Hence, it will be interesting to

examine the likelihood of the existence of competitive matchings in large matching mar-

kets. Our numerical results show that large marriage problems with random preferences

tend not to have a competitive matching. An alternative scenario we may analyze to obtain

a positive result in the context of bilateral matching problems with random preferences is

one where the number of goods is fixed independently of the number of agents while each

agent’s endowment is randomly drawn from the fixed set of goods.
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