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Does the COVID-19 crisis accelerate automation? We investigate this question by analyzing employment 

trends based on occupational COVID-19 exposure and automation potential, key factors influencing post-

pandemic automation. Using micro-level data from South Korea (2016–2022), we find a persistent decline 

in employment for occupations with high exposure and high automatability since the pandemic outbreak. 

In contrast, other occupations have largely recovered to pre-pandemic employment levels after an initial 

decline. These findings suggest that the pandemic has incentivized firms to adopt labor-replacing 

technologies to mitigate the business risks associated with viral transmission. 
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I.   INTRODUCTION 

It is widely recognized that efforts to enhance productivity–such as the adoption of new 

technology, reorganization, and job training–often intensify during economic recessions (Hall, 

1991; Caballero and Hammour, 1994; Aghion and Saint-Paul, 1998; Hall, 2000; Koenders and 

Rogerson, 2005; and Kopytov et al., 2018). Recent empirical evidence further suggests that the 

adoption of labor-replacing technologies tends to accelerate during economic downturns 

(Hershbein and Kahn, 2018; Zhang, 2019; and Jaimovich and Siu, 2020). 1  Unlike previous 

pandemics such as SARS, MERS, Ebola, and Zika, COVID-19 triggered a profound global 

economic recession beginning in 2020.2 Consequently, it is reasonable to anticipate significant 

advancements in automation as a key component of productivity-enhancing measures during the 

COVID-19 crisis.  

Moreover, firms facing disruptions in production or sales due to the spread of contagious 

diseases may respond by reducing labor inputs at workplaces (Autor and Reynolds, 2020; Blit, 

2020; and Chernoff and Warman, 2023). In other words, the business risks of widespread viral 

transmission create pandemic-specific automation incentives for organizations. For instance, 

Sedik and Yoo (2021) find that robot integration increased following epidemic outbreaks, 

particularly when accompanied by severe health and economic consequences. 

                                                
1 Hershbein and Kahn (2018) find that in U.S. regions more severely affected by the Great Recession, there were 

greater increases in skill requirements accompanied by increases in capital investments. Zhang (2019) shows that in 

response to negative aggregate shocks, firms where routine workers make up a greater share tend to decrease the use 

of routine-task labor while increasing their investments in machinery. Jaimovich and Siu (2020) demonstrate that 

employment in routine occupations that are easily replaceable by machines significantly decreased during each of the 

last three U.S. recessions and did not recover, leading to the widely referred-to “jobless recoveries.”  
2 In 2020, as the coronavirus escalated into a pandemic, major economies experienced unrivaled negative economic 

growth due to severe supply disruptions and plummeting demand (Figure A1). 

https://library.yonsei.ac.kr/eds/brief/discoveryResult?st=KWRD&service_type=brief&si=AU&q=%22Caballero%2C+Ricardo+J%2E%22
https://library.yonsei.ac.kr/eds/brief/discoveryResult?st=KWRD&service_type=brief&si=AU&q=%22Hammour%2C+Mohamad+L%2E%22
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This paper examines whether the COVID-19 pandemic, a significant episode that could 

potentially promote the adoption of labor-saving technologies, has indeed accelerated automation.3  

We hypothesize that job-related sensitivity to viral transmission and the intrinsic automation 

potential of tasks are pivotal factors influencing labor demand in the context of post-pandemic 

automation. During a large-scale pandemic, the degree of susceptibility to infection by occupation 

may have a differential impact on a firm’s incentives to adopt automation. Meanwhile, the 

feasibility of automating tasks limits the extent to which machines can replace labor in each 

occupation. To explore these dynamics, we analyze occupational employment trends in South 

Korea before and after the pandemic along two dimensions: exposure to COVID-19 and 

automation potential. 

Occupational COVID-19 exposure is measured by physical proximity and teleworkability 

indices for Korean occupations. Each index is based on U.S. Occupational Information Network 

(O*NET) surveys of the degree of face-to-face contact required for job performance and the 

adaptability of tasks to remote work for each occupation. An occupation is considered highly 

exposed to COVID-19 if it requires frequent close contact (i.e., a high physical proximity score) 

and offers limited telecommuting options (i.e., a low teleworkability score). Based on these criteria, 

individual occupations are categorized into two groups: high-exposure and low-exposure. 

Additionally, the automation probability for each occupation, serving as a proxy for its automation 

potential, is calculated using the methodology proposed by Frey and Osborne (2017). 

                                                
3 Given the variations in substitutability and complementarity between labor and capital across different job tasks, 

automation has different implications across worker’s skill levels. For related discussions, see Autor et al. (2003); 

Acemoglu and Autor (2011); Autor and Dorn (2013); Acemoglu and Restrepo (2018); and Acemoglu and Restrepo 

(2019). 
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Employing these metrics, we examine how employment trends have changed since the 

COVID-19 outbreak for each occupational group, categorized by their degree of COVID-19 

exposure and automation potential. We use data from the Local Area Labor Force Survey (LALFS), 

a semi-annual survey on detailed local employment situations administered by the Statistics Korea. 

The data cover the period from October 2016 to October 2022.  

Our findings reveal significant employment reductions in occupations characterized by 

both high exposure to COVID-19 and high automation potential since the onset of the pandemic. 

Although the overall economy has largely recovered from the initial pandemic shock,4 severe job 

losses in these occupations have persisted, indicating a phenomenon of “jobless recovery.” 

Furthermore, within the high-exposure group, employment in occupations with greater automation 

potential has declined more sharply, with this trend becoming increasingly pronounced over time. 

In contrast, the low-exposure group did not experience additional job losses attributable to 

automatability during the pandemic. Taken together, these findings suggest that automation 

potential alone was insufficient to drive structural shifts in employment in the post-pandemic 

period; rather, it required the interplay of automatability with heightened infection risks. This 

underscores the possibility that the COVID-19 crisis incentivized firms to adopt labor-replacing 

technologies as a strategic response to the business risks associated with viral transmission. 

This paper contributes to the growing literature on pandemic-induced automation in several 

dimensions. Firstly, this study explores heterogeneity in employment trends across occupations 

based on two job characteristics: pandemic exposure and automation potential. It highlights how 

the interaction between these two factors shapes automation dynamics during the pandemic. 

                                                
4 The global economy experienced a significant decline during the first year of the pandemic, but recovered with rapid 

growth in subsequent years (Figure A1). 
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Previous studies have evaluated the pandemic’s impact on automation, focusing on variations in 

the likelihood of automation across occupations (e.g., Ding and Molina, 2020; Bonilla et al., 2022; 

and Egana-delSol et al., 2022). 5  An exception is Song et al. (2023), who analyze shifts in 

occupational demand across different levels of disease risk and job automation capacity using U.S. 

job postings. Different from Song et al. (2023), we examine detailed occupational employment 

trends while accounting for various confounding factors and pre-existing employment patterns 

related to automation, providing a rigorous analysis to ascertain the relationship between the 

pandemic and advancements in automation. 

Additionally, by encompassing both the initial and recovery phases of the pandemic, we 

offer a comprehensive examination of enduring changes in employment related to pandemic-

induced automation. Previous studies suggest preliminary indications of the connection between 

the pandemic and automation, focusing on the early stages of the COVID-19 crisis. However, as 

automation involves the irreversible displacement of workers in certain jobs, tracking employment 

trends over an extended period is essential to fully understand the evolution of automation.  

 

II.   DATA AND MEASUREMENT 

Ⅱ.1. Data 

We utilize the Local Area Labor Force Survey (LALFS) administered by the Statistics 

Korea, encompassing approximately 234,000 households and detailing local employment 

situations. The survey is conducted biannually, in April and October. For our analysis, we restrict 

the sample to salaried employees and exclude individuals working in non-profit organizations, 

                                                
5  While Blit (2020) and Chernoff and Warman (2023) specify occupations vulnerable to viral transmission and 

automation in the U.S. and Canada, respectively, they do not analyze how the risk affects employment. 
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including those in “Public Administration and Defense.” The dataset spans from October 2016 to 

October 2022, covering approximately three years before and after the onset of the pandemic. 

 

Ⅱ.2. Exposure to COVID-19 

To measure the level of COVID-19 exposure by occupation, we develop two metrics for 

each occupation: (1) physical proximity and (2) teleworkability, utilizing information from the U.S. 

O*NET survey items.6  O*NET assesses the degree of physical proximity to customers or co-

workers required to perform the job on a scale of 1 to 5 for detailed U.S. occupations (O*NET 

SOC 6-digit).7 We map these ONET ratings for U.S. occupations to their Korean counterparts.8 

Physical proximity scores are calculated at the 4-digit Korean Standard Classification of 

Occupations (KSCO) using crosswalks that links a country’s occupational classification system to 

the International Standard Classification of Occupations (ISCO).9 

Dingel and Neiman (2020) assess the ability to work from home for each U.S. occupation 

using a scale from 0 to 1, based on 17 items from the O*NET survey. Dingel and Neiman (2020) 

consider an occupation that requires significant physical activity or intensive use of specialized 

equipment or direct interaction with the public as one that cannot be done at home. We apply the 

teleworkability scores for U.S. occupations (SOC 6-digit) from Dingel and Neiman (2020) to 

                                                
6 Similarly, Mongey et al. (2020) measure physical proximity and teleworkability for each occupation based on the 

O*NET survey in order to predict the potential impact of social distancing on occupation-specific labor demand using 

the U.S data. 
7 The rating categories are defined as follows: 1 = “I don’t work near other people (beyond 100 feet),” 2 = “I work 

with others but not closely (e.g., private office),” 3 = “Slightly close (e.g., shared office),” 4 = “Moderately close (at 

arm’s length),” and 5 = “Very close (near touching).” 
8 We use release 24.2 of the database administered by O*NET (https://www.O*NETcenter.org/dictionary/24.2). Given 

that the O*NET variable is presented at a highly granular level, we first calculate the average O*NET scores at the 

SOC 6-digit level. 
9 We employ crosswalks between SOC 2010 6-digit and ISCO 08 4-digit, as well as crosswalks between ISCO 08 4-

digit and KSCO 07 4-digit. 

https://www.o*netcenter.org/dictionary/24.2
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Korean occupations (KSCO 4-digit), following a similar approach used for evaluating physical 

proximity.10 

Both indices are then aggregated at the KSCO 3-digit level using a simple average.11 A job 

is classified as having high COVID-19 exposure if it scores above the employment-weighted 

median for physical proximity and below the median for teleworkability. Occupations not meeting 

these criteria are categorized as part of the low-exposure group. 

 

Ⅱ.3. Automation Probability 

Frey and Osborne (2017) argued that occupations requiring advanced perceptual and 

manipulative skills, as well as high levels of creative and social intelligence, are unlikely to be 

fully replaced by computer capital in the near future. Building on this premise, they estimated the 

automation probability for 702 U.S. occupations using a combination of expert surveys and 

machine learning techniques. 12  Kim (2015) extended their work by mapping these U.S. 

occupations, whose automation probabilities were determined by Frey and Osborne (2017), to 

Korean occupations (KSCO 4-digit) through cross-referencing the Korean and American 

occupational dictionaries.  

For this study, we aggregate the automation probabilities provided by Kim (2015) to the 

KSCO 3-digit level using a simple average. Out of a total of 153 occupations, 12 occupations are 

                                                
10  We draw Dingel and Neiman (2020)’s remote work index from https://github.com/jdingel/DingelNeiman-

workathome. 
11 The original score of physical proximity with a range of [0, 5] is rescaled to [0, 1]. 
12 Frey and Osborne (2017) classified 70 occupations as either automatable or not. They identified nine O*NET 

variables that describe job characteristics thought to strongly correlate with automation feasibility, such as the levels 

of perceptual and manipulative abilities, creative thinking, and social aptitude required for job performance. Using 

these variables, they predicted the automation probability for 702 U.S. occupations. A Gaussian process classifier was 

employed to estimate the likelihood of each occupation falling into the automatable category by leveraging patterns 

observed in the selected O*NET variables across 70 subjectively hand-labeled occupations in the training data. 
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excluded from our analysis because their automation probabilities are not calculated. The 

proportion of occupations omitted is minimal, accounting for only 2.89% of total employment as 

of October 2019. 13  Occupations are categorized as easily automatable if their automation 

probability is greater than or equal to 0.7 and as less automatable if their probability falls below 

this threshold. 

 

Ⅱ.4. Occupational Exposure to COVID-19 and Automation Probability 

Figure 1 presents the scores by occupation for three key metrics—physical proximity, 

teleworkability, and automation probability—aggregated at the KSCO 2-digit level.14 Physical 

proximity scores (x-axis) and teleworkability scores (y-axis) for each occupation are displayed on 

a two-dimensional plane. The two dashed lines represent the employment-weighted medians for 

each metric. Occupations are classified as having high COVID-19 exposure if their physical 

proximity score exceeds the employment-weighted median, while their teleworkability score falls 

below the employment-weighted median. Therefore, occupations located in the 4th quadrant 

delineated by the two dashed lines in Figure 1 (to the right of the red dashed line and below the 

blue dashed line) have high COVID-19 exposure. All occupations that do not fall into the high-

exposure group are classified as the low-exposure group.  

[Figure 1] 

The automation potential for each occupation is visualized using the colors and shapes of 

the markers in Figure 1. Frey and Osborne (2017) distinguish between high-risk, medium-risk, and 

                                                
13 This is because the specific occupations (KSCO 4-digit) included in these 12 occupations do not correspond to any 

of the 702 U.S. occupations according to the matching results of Kim (2015).  
14 We apply an employment-weighted average for each of the three metrics at the KSCO 2-digit level, using the number 

of employees in 2019 as the weight. Detailed scores by occupation for the three metrics are presented in Table A1. 
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low-risk occupations based on their automation probability (threshold at probabilities of 0.7 and 

0.3). In Figure 1, a blue circle indicates that the automation probability for that occupation falls 

within the range of [0, 0.3). Similarly, a yellow triangle and a red square indicate that the 

automation probability for those occupations falls within the ranges [0.3, 0.7) and [0.7, 1], 

respectively. 

We begin by briefly discussing the distribution of occupations based on indicators related 

to the degree of COVID-19 exposure. Occupations such as “Sales,” “Cooking and Food Service,” 

“Health and Social Welfare,” and “Personal Service” are characterized by limited teleworkability 

and high physical proximity to others (located in the 4th quadrant of Figure 1). These occupations 

are classified as having high COVID-19 exposure, making them particularly vulnerable to viral 

transmission. In contrast, occupations such as “Professionals,” “Technicians,” and “Clerical 

Workers” involve minimal face-to-face interaction and are more adaptable to telework (2nd 

quadrant). Meanwhile, “Equipment and Machine Operators” are less suited to telework but require 

relatively low physical contact (3rd quadrant), whereas occupations in “Educational Services” 

exhibit high telecommuting potential despite requiring intensive interpersonal interaction (1st 

quadrant). 

Among high-exposure occupations, roles such as “Sales,” “Cooking and Food Service,” 

“Food Processing,” and “Elementary Workers” (e.g., in sales, construction, and transportation) 

exhibit high automation potential. Conversely, occupations like “Health and Social Welfare” and 

“Personal Service” are relatively resistant to automation.15 In the low-exposure group, occupations 

such as “Clerical Workers” and “Equipment and Machine Operators” are more likely to face 

                                                
15 The employment share of jobs with high exposure and high automation potential at the KSCO 3-digit level in 2019 

is 23.5% (Figure A2).  
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automation, whereas roles like “Professionals,” “Technicians,” and “Managers” are less prone to 

replacement by machines.16 

 

III.   NAVIGATING OCCUPATIONAL EMPLOYMENT TRENDS BY COVID-19 EXPOSURE AND 

AUTOMATION POTENTIAL 

This section investigates whether there are discernible employment patterns linked to job 

characteristics. Specifically, we compare the employment trends across various occupational 

groups categorized by their levels of COVID-19 exposure and automation potential.  

Figure 2 illustrates employment trends before and after COVID-19 for easily and less 

automatable jobs within both high- and low-exposure groups. Prior to the pandemic, 17 employment 

growth in easily automatable jobs lagged behind that of less automatable jobs across both exposure 

groups. Post-pandemic trends reveal differing recovery patterns. In the low-exposure group, both 

easily and less automatable jobs returned to their pre-pandemic trajectories following an initial 

decline (panel (a)). 

[Figure 2] 

In contrast, the high-exposure group exhibits a more pronounced divergence in 

employment growth between jobs with high and low automation potential after the onset of the 

pandemic (panel (b)). While less automatable jobs in the high-exposure group experienced an 

initial decline in employment following the outbreak, they eventually resumed pre-pandemic 

growth patterns, resembling trends observed in the low-exposure group. Conversely, employment 

in easily automatable jobs within the high-exposure group has remained consistently below pre-

                                                
16 The employment share of easily automatable jobs in the high-exposure group is 66.7%, which is higher than the 

40.4% observed in the low-exposure group. 
17 The first case of coronavirus in South Korea occurred in January 2020. 
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pandemic levels since the onset of the COVID-19 crisis. Consequently, the pandemic has 

exacerbated the disparity in employment growth between easily automatable and less automatable 

jobs within the high-exposure group, widening this gap more sharply than before the pandemic.18 

We further examine the relationship between employment growth and automatability 

before and after the pandemic. In the low-exposure group, the correlation between employment 

growth and automatability is not significant either before or after the outbreak (Figure A4, panel 

(a)). On the contrary, the inverse relationship between employment growth and automatability by 

occupation in the high-exposure group has strengthened considerably after COVID-19 (panel (b)). 

These results suggest that there are likely to be marked differences in automation dynamics among 

occupations with varying degrees of COVID-19 exposure. 

 

IV.   EMPIRICAL EVALUATION OF THE IMPACT OF PANDEMIC-INDUCED AUTOMATION FORCE 

Ⅳ.1. Empirical Strategy 

Building on the substantial difference in employment paths as a function of automation 

potential between two occupational groups with different levels of COVID exposure, we estimate 

the following event-study model.  

                                                
18 This observation is preserved when we use both physical-proximity and teleworkability distinctively to measure 

COVID exposure. In all subgroups with low exposure, the gap in employment growth between easily automatable and 

less automatable jobs shows little change before and after COVID-19 (panels (a), (b), and (c) of Figure A3). 
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𝑙𝑛𝑒𝑚𝑝𝑖,𝑜,𝑡  = ∑ 𝛾𝑡(𝐷ℎ𝑖𝑔ℎ × 𝐷𝑡) 

2022.10

𝑡=2016.10,𝑡 ≠2019.10

+  ∑ 𝛿𝑡(𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡) 

2022.10

𝑡=2016.10,𝑡 ≠2019.10

+  ∑ 𝛽𝑡(𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜  × 𝐷𝑡) 

2022.10

𝑡=2016.10,𝑡 ≠2019.10

+ 𝛼𝑖,𝑜 + 𝜆𝑡 + 𝜃𝑋𝑖,𝑡 + 𝜀𝑖,𝑜,𝑡 , 

(1) 

where 𝑙𝑛𝑒𝑚𝑝𝑖,𝑜,𝑡 is the log employment of occupation o in industry i at time t, 𝐷ℎ𝑖𝑔ℎ is a dummy 

variable indicating whether an occupation is highly exposed to COVID-19 or not, and 𝐴𝑢𝑡𝑜𝑜 is 

the standardized transformation of automation probabilities by occupation to mean zero and 

standard deviation one. 𝐷𝑡 is a calendar time dummy variable with a semi-annual frequency that 

spans from October 2016 to October 2022, using October 2019 as the reference period. 𝛼𝑖,𝑜 is the 

unit fixed effect, 𝜆𝑡 is the time fixed effect, and 𝑋𝑖,𝑡 is the control vector to account for industrial 

activity including an industrial production index and its lags (𝑡 − 1 and 𝑡 − 2).19  

This model allows us to capture the dynamic effects of occupational automation potential 

on employment for each group. We set up a combination of each 2-digit industry and each 3-digit 

occupation as a sample unit. Our regression analysis relies on a balanced panel dataset that includes 

only units with complete observations throughout the sample period. 

We estimate Eq. (1) using different criteria to define the high-exposure group. As the 

baseline, we assign a value of one to the dummy variable 𝐷ℎ𝑖𝑔ℎ for each occupation if its physical 

proximity score exceeds the employment-weighted 50th percentile (i.e., employment-weighted 

                                                
19 We obtain the industrial production index (KSIC 2-digit) from the Statistics Korea.  
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median) and its teleworkability score falls at or below the employment-weighted 50th percentile. 

We then refine the definition of the high-exposure group by incrementally adjusting the cutoff 

thresholds for either the physical proximity score or the teleworkability score. 

In our specification, we interpret the automation potential variable (𝐴𝑢𝑡𝑜𝑜) as representing 

treatment intensity imposed by COVID-19 in the context of difference-in-differences (DID) design 

and COVID exposure (𝐷ℎ𝑖𝑔ℎ) as moderating the treatment effects. Our primary interest is thus the 

coefficient on the three-way interaction term ( 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡 ), 𝛽𝑡 , which captures the 

additional employment change attributable to the occupation-specific automation potential in the 

high-exposure group compared to the low-exposure group. We expect it to have statistically 

significant negative values after April 2020 (t ≥ 2020.4) if the spread of the pandemic led to a 

greater reduction in employment for occupations more susceptible to automation, particularly in 

the high-exposure group. 

The analyses in Section Ⅲ suggest that there were observable patterns in occupational 

employment by concerning automation potential prior to the pandemic outbreak. To alleviate 

potential bias arising from pre-existing trends in development of automation, we partial out pre-

pandemic employment trends related to occupation-specific automation potential following 

Bhuller et al. (2013) and Goodman-Bacon (2021b). Specifically, we estimate linear time trends 

interacted with automation potential for each group on data up to just before the outbreak (October 

2019). We then extrapolate the estimated pre-trends to the post pandemic period, and subtract the 

fitted trend from all observations.20 

                                                
20 Many DID (or event study) analyses control for unit-specific trends over the sample period. However, several studies 

indicate that this approach may introduce significant bias in the estimated coefficients if treatment effects themselves 

exhibit trends (see Wolfers, 2006; Meer and West, 2016; Goodman-Bacon, 2021a; and Miller, 2023). Recent research 
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Ⅳ.2. Main Results 

We first present the results of estimating Eq. (1) by replacing the calendar time variable 

with a single dummy variable indicating the post-COVID-19 period. The corresponding 

coefficients, where the scope of the high-exposure group is gradually reduced, are presented in 

columns (1)–(4) of Table 1.21 The coefficients on 𝐷ℎ𝑖𝑔ℎ × 𝐷𝑝𝑜𝑠𝑡−𝐶𝑂𝑉𝐼𝐷 , indicating the average 

employment change in the high-exposure group after the pandemic, are negative, although they 

are statistically significant only in column (4). The coefficients on 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑝𝑜𝑠𝑡−𝐶𝑂𝑉𝐼𝐷  are close 

to zero and statistically insignificant in all cases, suggesting that occupational automation potential 

does not contribute to post-pandemic employment changes in the low-exposure groups. In contrast, 

the coefficients on the three-way interaction, 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑝𝑜𝑠𝑡−𝐶𝑂𝑉𝐼𝐷 , exhibit statistically 

significant negative values across all specifications. These results indicate that, in the high-

exposure group, occupation-specific automation potential depresses employment during the 

pandemic.  

 [Table 1] 

                                                
suggests focusing solely on controlling for prior trends when the intervention’s effect follows a monotonic pattern 

over time (Bhuller et al., 2013; Goodman-Bacon, 2021b; and Miller, 2023). The results in Section Ⅲ and Ⅳ.2 clearly 

indicate that the employment gap due to the occupational automation margin has continuously increased beyond the 

pre-pandemic trend, especially in the high-exposure group. 
21 For example, in column (1), the dummy variable 𝐷ℎ𝑖𝑔ℎ is set to one if the job’s physical proximity score exceeds 

the employment-weighted 50th percentile and its teleworkability score is below or equal to that percentile, which 

serves as a benchmark. In column (4), 𝐷ℎ𝑖𝑔ℎ equals one if the physical proximity score is above the employment-

weighted 60th percentile and the teleworkability score is at or below the employment-weighted 40th percentile (see 

note in Table 1). 
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Next, we present the results from the event-study estimation. 22  Figure 3 displays 

coefficients on the three-way interaction, 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡, implying the differential effect of 

occupation-specific automation potential on employment in the high-exposure group. Details of 

the estimates are reported in Table A2. The absence of pre-trends in occupational employment 

related to automation potential is depicted in Figure 3. In the high-exposure group, occupations 

with higher automation potential experienced a greater decline in employment in the immediate 

aftermath of the pandemic outbreak. Notably, the detrimental impact of automation potential on 

employment in this group has gradually intensified. In the baseline scenario, the estimated 

additional employment change due to one standard deviation in automation potential in the high-

exposure group is –6.2% in April 2020, just after the outbreak (column (1) in Table 2). This 

negative impact continuously increases, with the estimate reaching –8.4% in October 2022, the 

last period in our sample. The main results hold even when the scope of the high-exposure group 

is marginally adjusted. 

[Figure 3] 

In summary, there was no sustained change in employment due to coronavirus exposure 

alone. Additionally, in the low-exposure group, we find no evidence of a change in the relationship 

between automation potential and employment after the pandemic. However, in the high-exposure 

group, occupations with greater susceptibility to automation experienced more pronounced 

declines in employment since the onset of COVID-19. The adverse impact of occupation-specific 

                                                
22 Consistent with earlier findings, no average change in employment is observed in the high exposure group and the 

effect of occupational automation potential on employment in the low-exposure group remains unchanged following 

the pandemic. The coefficient on 𝐷ℎ𝑖𝑔ℎ  × Dt decreases shortly after the outbreak (April 2020), but close to zero 

thereafter. The coefficients on 𝐴𝑢𝑡𝑜𝑜 × Dt are not different from zero across all periods. Detailed results are available 

upon request. 
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automation potential on employment has become increasingly apparent during the pandemic era. 

These findings are consistent with the employment trends across occupational groups categorized 

by their levels of COVID-19 exposure and automation potential, as described in Section III.23  

 

Ⅳ.3. Possible Mechanisms 

In this section, we propose a potential mechanism to refine the insights derived from the 

main findings. One potential explanation for the main result is that the stagnant employment in 

occupations characterized by high exposure and high automation potential may be driven by 

demand-side factors specific to their dominant industries. However, empirical evidence challenges 

this explanation, indicating that the persistent post-pandemic job losses cannot be solely attributed 

to a sluggish recovery in industrial production activity. In industries dominated by highly exposed 

and easily automatable jobs,24 production levels have returned to pre-pandemic norms, comparable 

to other industries (Figure A5, panel (a)). Despite this recovery, employment in highly exposed 

and easily automatable jobs within these industries has stagnated significantly below pre-pandemic 

levels, while employment in other occupations has experienced rapid growth following an initial 

decline after the outbreak.25 These results suggest that the substantial job losses in occupations 

                                                
23 Several experiments confirm the robustness of the main findings. First, we estimate the main model (Eq. (1)) using 

annual data to assess the impact of seasonal effects in our analysis. Furthermore, we replicate the main analysis using 

a more aggregated sample unit (combining each 2-digit industry and each 2-digit occupation) to mitigate potential 

measurement errors in our key metrics. All estimates align with those from the main analysis (Figures A6 and A7).  
24 Industries dominated by highly exposed and easily automatable jobs are defined as those where at least 60% of 

employment is concentrated in such roles (e.g., “Food and beverage service activities,” “Retail trade,” “Land transport 

and transport via pipelines,” “General construction”). 
25 In industries dominated by jobs with high exposure and high automation potential, production activity has grown 

faster than total employment post-pandemic, indicating a potential improvement in labor productivity (Figure A5, 

panel B). 
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with high exposure and high automation potential after the pandemic are not solely driven by 

sluggish demand in the industries where these occupations are prevalent. 

Next, as noted in the introduction, we hypothesize that COVID-19 exposure in job 

performance and the inherent automatability of job tasks jointly influence labor demand associated 

with automation during the pandemic. Based on this hypothesis, we interpret the continued decline 

in employment in highly automatable jobs within the high-exposure group as evidence of 

accelerated automation in these occupations following the pandemic. However, concerns may arise 

that the post-pandemic employment decline in certain sectors is instead driven by reduced labor 

supply caused by the pandemic. To address these concerns, we re-estimate the main model (Eq. 

(1)) using wages as the dependent variable.26  

The estimation results based on two periods (pre-COVID-19 and post-COVID-19) indicate 

that, in the high-exposure group, there is no increase in hourly wages due to occupational 

automation potential. Rather, occupations with higher automation potential in this group appear to 

have experienced an additional decline in hourly wages following the pandemic (row 3 in Table 

A3).27 The findings from the event-study estimation are consistent: in the high-exposure group, 

hourly wages in occupations with higher automatability have consistently declined since the onset 

of the pandemic (Figure A8). Therefore, our key result does not seem to be driven by labor supply. 

Finally, acknowledging that post-pandemic changes in employment trends likely reflect 

shifts in labor demand driven by automation, we aim to elucidate the mechanisms underpinning 

post-pandemic automation. We propose that two key drivers of this automation are recession-

                                                
26 The data (LALFS) include three-month average monthly wages and weekly hours worked at the time of the survey. 

We converted the weekly hours to monthly hours (weekly hours × 4) and calculated hourly wages by dividing the 

monthly salary by the monthly hours. 
27 The significance of the coefficients (𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡) varied depending on the high exposure grouping criterion, 

but the signs of the regression coefficients are consistently negative.  
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induced productivity-enhancement motives and pandemic-specific incentives related to mitigating 

viral transmission. The empirical finding that sustained post-pandemic job losses were exclusively 

confined to the high-exposure group appears to support the latter scenario. However, our results 

may also reflect a broader process of eliminating cost-inefficient inputs, consistent with 

productivity improvements typically observed during recessionary periods.28  

To determine whether pre-determined labor costs are involved in our findings, we examine 

whether pre-pandemic labor cost pressures at the industry or occupation level are linked to post-

pandemic changes in employment trends. We estimate industry and occupation-specific wage 

premiums using the Mincer earnings equation as a proxy for labor cost pressures at the industry 

and occupation levels, respectively. Specifically, we estimate the following model using pre-

pandemic data from April 2016 to October 2019: 

 𝑙𝑛𝑤𝑎𝑔𝑒ℎ,𝑖,𝑜,𝑡 =  𝑋ℎ,𝑡𝛽 + 𝜏𝑡 + 𝜙𝑖 + 𝜓𝑜  + 𝜀ℎ,𝑖,𝑜,𝑡 (2) 

where  𝑤𝑎𝑔𝑒ℎ is the wage rate of worker h; i and o denote industry and occupation, respectively; 

X is the vector of individual characteristics;29 𝜏𝑡 is the time fixed effect; 𝜙𝑖 is the industry fixed 

effect; and 𝜓𝑜 is the occupation fixed effect. Each industry and occupation fixed effect measures 

the industry and occupation-specific wage premium, respectively. 

                                                
28 We can consider two specific scenarios in which our main result might reflect the process of eliminating pre-existing 

labor cost inefficiencies. First, jobs that experienced significant employment declines after the pandemic may overlap 

with those that incurred high extra costs prior to the pandemic. In such cases, firms might have simply shed cost-

inefficient positions during the pandemic-induced recession. Second, industries with high wage premiums may have 

actively reduced their workforces by targeting specific occupations, taking advantage of the favorable conditions for 

layoffs created by the pandemic. 
29 It includes worker’s gender, age (eleven groups: 15–19, 20–24, 25–29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 

60–64, and older than 65), educational attainment (five groups: less than high school graduate, high school graduate, 

2-year college graduate, 4-year college graduate, and higher than graduate degree), work type (three groups: 

permanent employee, temporary employee, and daily worker), years of service and its quadratic term, and various 

interaction terms (gender × education, gender × age, gender × work type). 
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In jobs with high exposure and high automation potential, occupation-specific wage 

premiums are relatively low compared to other groups as shown in Figure 4. Furthermore, the 

post-pandemic employment decline in these jobs is more pronounced in sectors with low industry 

wage premiums (Figure A9). Consequently, these results suggest that changes in employment 

trends during the pandemic were unrelated to pre-pandemic labor costs, supporting the argument 

that the pandemic-specific incentives for automation might have played a key role in shaping post-

pandemic employment dynamics.  

[Figure 4] 

 

V.   CONCLUSION 

Does COVID-19 boost automation? Analyzing data from South Korea, we find that 

significant employment contractions in occupations with high COVID-19 exposure and high 

automation potential have persisted until recently. However, in the low-exposure group, there is 

no additional job loss attributable to automatability during the pandemic. Moreover, in the high-

exposure group, employment in occupations more prone to automation has fallen more 

significantly since the pandemic outbreak. The consistent decline in employment in more 

automatable occupations within the high-exposure group does not appear to be driven by either 

industry demand or labor supply factors. In sum, our results suggest that the COVID-19 crisis may 

have incentivized firms to integrate labor-replacing technologies in response to the business risks 

posed by viral spread. 

Finally, we note that our empirical analysis provides only partial evidence of post-

pandemic automation progress. Due to data limitations, we were unable to illustrate patterns of 

capital adoption, leaving a gap in understanding the full scope of advancements in automation 
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prompted by COVID-19. 30  Exploring the direct link between the pandemic and automation 

remains an area for future research. 

 

References 

Acemoglu, D., and Autor, D. (2011). Skills, tasks and technologies: Implications for employment 

and earnings. Handbook of Labor Economics, 4, 1043–1171. 

Acemoglu, D., and Restrepo, P. (2018). The race between man and machine: Implications of 

technology for growth, factor shares, and employment. American Economic Review, 108(6), 

1488–1542. 

Acemoglu, D., and Restrepo, P. (2019). Automation and new tasks: How technology displaces and 

reinstates labor. Journal of Economic Perspectives, 33(2), 3–30. 

Aghion, P., and Saint-Paul, G. (1998). Virtues of bad times interaction between productivity 

growth and economic fluctuations. Macroeconomic Dynamics, 2(3), 322–344. 

Autor, D. H.,  and Dorn. D. (2013). The growth of low-skill service jobs and the polarization of 

the US labor market. American Economic Review, 103(5), 1553–1597. 

Autor, D. H., Levy, F., and Murnane, R. J. (2003). The Skill Content of Recent Technological 

Change : An Empirical Exploration. Quarterly Journal of Economics, 118(4), 1279–1333. 

Autor, D. H., and Reynolds, E. (2020). The nature of work after the COVID crisis: Too few low-

wage jobs. The Hamilton Project, Brookings, 1(2), 408–415.  

                                                
30 Based on our analysis, we anticipate a significant rise in the adoption of automated machinery in the post-COVID-

19 period, particularly within the service industry, where face-to-face service jobs are predominant. The International 

Federation of Robotics (IFR) is a reliable source for tracking trends in automation-related capital investment. However, 

unlike the manufacturing sector, detailed robotics statistics for the service industry are currently unavailable in the 

IFR database. 



21 

 

Bhuller, M., Havnes, T., Leuven, E., and Mogstad, M. (2013). Broadband internet: An information 

superhighway to sex crime?. Review of Economic Studies, 80(4), 1237–1266.  

Blit, J. (2020). Automation and Reallocation:Will COVID-19 Usher in the Future of Work?. 

Canadian Public Policy, 46, S192–S202.  

Bonilla-Mejía, L., Flórez, L. A., Hermida, D., Lasso-Valderrama, F., Morales, L. F., Ospina-

Tejeiro, J. J., and Pulido, J. (2022). Is the Covid-19 pandemic fast-tracking automation in 

developing countries? Evidence from Colombia. Bank for International Settlements, 1048, 

1–35. 

Caballero, R. J., and Hammour, M. L. (1994). The Cleansing Effect of Recessions. American 

Economic Review, 84(5), 1350–1368. 

Chernoff, A., and Warman, C. (2023). COVID-19 and implications for automation. Applied 

Economics, 55(17), 1939–1957. 

Ding, L., and Molina, J. S. (2020). “Forced Automation” by COVID-19? Early Trends from 

Current Population Survey Data. Discussion Papers, Federal Reserve Bank of Philadelphia, 

September, 1–28.  

Dingel, J. I., and Neiman, B. (2020). How many jobs can be done at home?. NBER Working Paper 

26948.  

Egana-delSol, P., Cruz, G., and Micco, A. (2022). COVID-19 and automation in a developing 

economy: Evidence from Chile. Technological Forecasting and Social Change, 176, 121373.  

Frey, C. B., and Osborne, M. A. (2017). The future of employment: How susceptible are jobs to 

computerisation?. Technological Forecasting and Social Change, 114, 254–280.  

Goodman-Bacon, A. (2021a). Difference-in-differences with variation in treatment timing. 

Journal of Econometrics, 225(2), 254–277.  

https://library.yonsei.ac.kr/eds/detail/edsjsr_edsjsr.2117776


22 

 

Goodman-Bacon, A. (2021b). The long-run effects of childhood insurance coverage: Medicaid 

implementation, adult health, and labor market outcomes. American Economic Review, 

111(8), 2550–2593.  

Hall, R. E. (1991). Recessions as Reorganizations. NBER Macro Annual, 6, 17–47.  

Hall, R. E. (2000). Reorganization. Carnegie-Rochester Conference Series on Public Policy, 52, 

1–22. 

Hershbein, B., and Kahn, L. B. (2018). Do recessions accelerate routine-biased technological 

change? evidence from vacancy postings. American Economic Review, 108(7), 1737–1772.  

Jaimovich, N., and Siu, H. E. (2020). Job polarization and jobless recoveries. Review of Economics 

and Statistics, 102(1), 129–147. 

Kim, S. U. (2015). Labor Market Changes and Response to Technological Progress. Korea Labor 

Institute Policy Research, 2015-05. 

Koenders, K., and Rogerson, R. (2005). Organizational dynamics over the business cycle: A view 

on jobless recoveries. Federal Reserve Bank of St. Louis Review, 87(4), 555–579.  

Kopytov, A., Roussanov, N., and Taschereau-Dumouchel, M. (2018). Short-run pain, long-run 

gain? Recessions and technological transformation. Journal of Monetary Economics, 97, 29–

44.  

Meer, J., and West, J. (2016). Effects of the minimum wage on employment dynamics. Journal of 

Human Resources, 51(2), 500–522.  

Miller, D. L. (2023). An Introductory Guide to Event Study Models. Journal of Economic 

Perspectives, 37(2), 203–230.  

Mongey, S., Pilossoph, L., and Weinberg, A. (2020). Which workers bear the burden of social 

distancing? NBER Working Paper 27085. 



23 

 

Sedik, T. S., and Yoo, M. J. (2021). Pandemics and Automation: Will the Lost Jobs Come Back?. 

IMF Working Paper 11. 

Song, C., Beaulieu, L. J., Kumar, I., and Gallardo, R. (2023). COVID-19-Induced Automation: An 

Exploratory Study of Critical Occupations. Economic Development Quarterly, 37(2), 183–

197.  

Wolfers, J. (2006). Did Unilateral Divorce Laws Raise Divorce Rates ? A Reconciliation and New 

Results. American Economic Review, 96(5), 1802–1820. 

Zhang, M. B. (2019). Labor‐technology substitution: Implications for asset pricing. The Journal 

of Finance, 74(4), 1793–1839. 

  



24 

 

Figure 1. Physical proximity, Teleworkability, and Automation Probability by Occupation 

 

Source: Authors’ calculation. 

Note: The figure summarizes the scores by occupation for the three metrics—physical proximity, teleworkability, and 

automation probability—at the KSCO 2-digit level. The x-axis plots the physical proximity score of each occupation 

based on the U.S. O*NET survey. The y-axis plots the teleworkability score based on the remote work index developed 

by Dingel and Neiman (2020). For graphical representation, we rescale the scores of physical proximity and 

teleworkability to the interval [0, 1] by subtracting the minimum value and dividing by the range (maximum minus 

minimum values). The farther to the right, the higher the physical proximity, and the farther up, the higher the 

teleworkability. The two dashed lines refer to the employment-weighted median along each dimension. Occupations 

with a physical proximity score above the employment-weighted median and a teleworkability score less than or equal 

to the employment-weighted median (4th quadrant) are classified as the high-exposure group. All occupations that do 

not fall into the high-exposure group (outside the 4th quadrant) are classified as the low-exposure group. The colors 

and shapes of the markers indicate the level of automation potential for each occupation based on its automation 

probability. The automation probability by occupation is based on Kim (2015) and Frey and Osborne (2017). 
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Figure 2. Employment Trends of Easily Automatable and Less Automatable Jobs 

(Low-exposure group vs. High-exposure group) 

 

Source: Local Area Labor Force Survey (LALFS). 

Note: The figure shows the employment levels of easily automatable jobs and less automatable jobs for each 

occupational group, categorized by the level of COVID exposure at the KSCO 3-digit level from October 2016 to 

October 2022. The number of employees is standardized to a value of 100 for October 2016. Occupations are classified 

as having high COVID exposure if the physical proximity score is higher than the employment-weighted median, and 

the teleworkability score is equal to or lower than the employment-weighted median. All occupations that do not fall 

into the high-exposure group are classified as the low-exposure group. Occupations are considered to be easily (less) 

automatable if the automation probability is higher than or equal to (less than) 0.7. 
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Figure 3. Event-Study Estimates of the Effect of Automation Potential Interacted with the High-

Exposure Group on Employment: Coefficients on 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡 

 

Note: The figure plots the estimated coefficients on three-way interaction between high-exposure group, automation 

potential, and each calendar time dummy, 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡, via Eq. (1). The estimates are adjusted for a linear 

trend interacted with automation potential for each group categorized by their COVID exposure during the pre-

pandemic period. The regressions are weighted by employment in 2019. All models include a unit (i.e., the 

combination of industry-occupation) fixed effect, time fixed effect, and industrial production index. N=21,411 (1,647 

units × 13 time periods). Base period is October 2019. Standard errors are clustered at the industry-occupation level 

and the confidence intervals are at 95% level. We apply different criteria for defining the high-exposure group 

indicator, 𝐷ℎ𝑖𝑔ℎ, across panels (a) to (d). In panel (a), we assign the value of the dummy variable 𝐷ℎ𝑖𝑔ℎ as one for each 

unit if its physical proximity score is above the 50% weighted percentile (i.e., employment-weighted median), and its 

teleworkability score is less than or equal to the 50% weighted percentile (i.e., employment-weighted median), serving 

as the baseline. In panel (b), we assign the value of dummy variable 𝐷ℎ𝑖𝑔ℎ as one for each unit if its physical proximity 

score is above the 50% weighted percentile and its teleworkability score is less than or equal to the 40% weighted 

percentile. In panel (c), we assign the value of dummy variable 𝐷ℎ𝑖𝑔ℎ as one for each unit if its physical proximity 

score is above the 60% weighted percentile and its teleworkability score is less than or equal to the 50% weighted 

percentile. In panel (d), we assign the value of dummy variable 𝐷ℎ𝑖𝑔ℎ as one for each unit if its physical proximity 

score is above the 60% weighted percentile and its teleworkability score is less than or equal to the 40% weighted 

percentile.   
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Figure 4. Occupation-Specific Wage Premium by Occupational Group 

 

Source: Local Area Labor Force Survey (LALFS). 
Note: The figure shows the pre-pandemic occupation-specific wage premium by occupational group, categorized by 

the level of COVID exposure and automation potential at the KSCO 3-digit level. The average wage premium for 

each group is weighted by each occupation’s 2019 employment level within that group. 
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Table 1. Estimation Results of Eq. (1) 

(Imposing only two periods: pre and post-COVID-19)  

 
grouping criteria for Dhigh : 

(1) 
ppo > p50 

& teleo ≤ p50 

(2) 
ppo > p50 

& teleo ≤ p40 

(3) 
ppo > p60 

& teleo ≤ p50 

(4) 
ppo > p60 

& teleo ≤ p40 

Dhigh × Dpost-COVID -0.003 -0.030 -0.013 -0.043* 

(0.037) (0.025) (0.039) (0.025) 

Autoo × Dpost-COVID 0.014 0.010 0.015 0.011 

(0.015) (0.015) (0.014) (0.015) 

Dhigh × Autoo × Dpost-COVID -0.066* -0.046* -0.074** -0.056** 

(0.037) (0.025) (0.037) (0.025) 

Control variables     

Industrial production √ √ √ √ 

Unit fixed effect √ √ √ √ 

Time fixed effect √ √ √ √ 

Observations 21,411 21,411 21,411 21,411 

𝑅2 0.235 0.235 0.236 0.237 

Note: The table reports the estimation results of Eq. (1), replacing the calendar time variable with only one dummy 

variable indicating post-COVID-19 period. The estimates are adjusted for a linear trend interacted with automation 

potential for each group categorized by their COVID exposure during the pre-pandemic period. The regressions are 

weighted by employment in 2019. All models include a unit (i.e., the combination of industry-occupation) fixed effect, 

time fixed effect, and industrial production index. N=21,411 (1,647 units × 13 time periods). Base period is October 

2019. Standard errors are clustered at industry-occupation level. ***p< 0.01, **p< 0.05, *p< 0.1. We apply different 

criteria for defining the high-exposure group indicator, 𝐷ℎ𝑖𝑔ℎ, across columns (1) to (4). In column (1), we assign the 

value of the dummy variable 𝐷ℎ𝑖𝑔ℎ as one for each unit if its physical proximity score is above the 50% weighted 

percentile (i.e., employment-weighted median), and its teleworkability score is less than or equal to the 50% weighted 

percentile (i.e., employment-weighted median), serving as the baseline. In column (2), we assign the value of dummy 

variable 𝐷ℎ𝑖𝑔ℎ  as one for each unit if its physical proximity score is above the 50% weighted percentile and its 

teleworkability score is less than or equal to the 40% weighted percentile. In column (3), we assign the value of dummy 

variable 𝐷ℎ𝑖𝑔ℎ  as one for each unit if its physical proximity score is above the 60% weighted percentile and its 

teleworkability score is less than or equal to the 50% weighted percentile. In column (4), we assign the value of dummy 

variable 𝐷ℎ𝑖𝑔ℎ  as one for each unit if its physical proximity score is above the 60% weighted percentile and its 

teleworkability score is less than or equal to the 40% weighted percentile.   
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Online Appendix 

 

Figure A1. Growth Rates of Real GDP in Major Economies

 

Source: IMF World Economic Outlook Database. 

Note: The figure shows the annual growth rate of real GDP in major economies from 2018 to 2022. 
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Figure A2. Employment Share by Occupational Group 

 

Source: Local Area Labor Force Survey (LALFS). 

Note: The figure shows the employment share by occupational group based on the level of COVID exposure and 

automation potential in 2019. Occupations are classified as having high COVID exposure if the physical proximity 

score is above the employment-weighted median, and the teleworkability score is less than or equal to the 

employment-weighted median. All occupations that do not fall into the high-exposure group are classified as the low-

exposure group. Occupations are considered to be easily (less) automatable if the automation probability is higher 

than or equal to (less than) 0.7. 
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Figure A3. Employment Trends of Easily Automatable and Less Automatable Jobs  

by Detailed Occupational Group 

 

Source: Local Area Labor Force Survey (LALFS). 

Note: The figure shows the employment levels of easily automatable jobs and less automatable jobs for each detailed 

occupational group, categorized by the level of each of the two metrics used to measure COVID exposure at the KSCO 

3-digit level from October 2016 to October 2022. The number of employees is standardized to a value of 100 for 

October 2016. We define occupations as those with a “high (low) physical proximity” if the physical proximity score 

is above (less than or equal to) the employment-weighted median. Similarly, occupations are defined as “(less) 

teleworkable” if the teleworkability score is above (less than or equal to) the employment-weighted median. 

Occupations are considered to be easily (less) automatable if the automation probability is higher than or equal to (less 

than) 0.7. 
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Figure A4. Employment Growth and Automation Potential by Occupation before and after 

COVID-19 (Low-exposure group vs. High-exposure group) 

 

Note: The figure shows the approximated annualized growth rate of employment and automation potential by 

occupation before and after COVID-19 for each occupational group, categorized by the level of COVID exposure at 

the KSCO 3-digit level. The index of automation potential is a standardized transformation of automation probabilities 

by occupation to have a mean of zero and a standard deviation of one. The corresponding estimation results, where 

employment growth is regressed on automation potential by occupation, are displayed in the upper left corner of each 

chart. The regressions are weighted by employment in 2019. Standard errors are robust against heteroscedasticity. For 

graphical representation, we exclude outliers whose annual employment grew by more than 30%. The pre-COVID-

19 period spans from October 2016 to October 2019, and the post-COVID-19 period spans from October 2019 to 

October 2022. The circle’s size denotes the employment level of each occupation in October 2019. 
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Figure A5. Occupational Employment and Industrial Production 

 

Source: Local Area Labor Force Survey (LALFS). 

Note: The figure shows industrial production and employment by occupation group for each industrial sector, based 

on the employment share of highly exposed and easily automatable jobs. Industrial production for each sector is 

weighted by the employment level of each industry within that sector. Both industrial production and the number of 

employees are standardized to a value of 100 as of October 2019. We define industries dominated by highly exposed 

and easily automatable jobs as those where such jobs account for at least 60% of total employment. 
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Figure A6. Event-Study Estimates of the Effect of Automation Potential Interacted with High-

Exposure Group on Employment: Coefficients on 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡 (yearly basis) 

 

Note: The figure plots the estimated coefficients on three-way interaction between high-exposure group, automation 

potential, and each calendar time dummy, 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡, via Eq. (1), using only October data for each year. 

The estimates are adjusted for a linear trend interacted with automation potential for each group categorized by their 

COVID exposure during the pre-pandemic period. The regressions are weighted by employment in 2019. All models 

include a unit (i.e., the combination of industry-occupation) fixed effect, time fixed effect, and industrial production 

index. N=11,529 (1,647 units × 7 time periods). Base period is October 2019. Standard errors are clustered at the 

industry-occupation level and the confidence intervals are at 95% level. We apply different criteria for defining the 

high-exposure group indicator, 𝐷ℎ𝑖𝑔ℎ, across panels (a) to (d) (see the note in Figure 3). 
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Figure A7. Event-Study Estimates of the Effect of Automation Potential Interacted with High-

Exposure Group on Employment: Coefficients on 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑖,𝑜 × 𝐷𝑡 (aggregate level) 

 

Note: The figure plots the estimated coefficients on three-way interaction between high-exposure group, automation 

potential, and each calendar time dummy, 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡 , via Eq. (1), based on sample units at a more 

aggregated level – combinations of each 2-digit industry an each 2-digit occupation. The estimates are adjusted for a 

linear trend interacted with automation potential for each group categorized by their COVID exposure during the pre-

pandemic period. The regressions are weighted by employment in 2019. All models include a unit (i.e., the 

combination of industry-occupation) fixed effect, time fixed effect, and industrial production index. N=14,378 (1,106 

units × 13 time periods). Base period is October 2019. Standard errors are clustered at the industry-occupation level 

and the confidence intervals are at 95% level. We apply different criteria for defining the high-exposure group 

indicator, 𝐷ℎ𝑖𝑔ℎ, across panels (a) to (d) (see the note in Figure 3).  
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Figure A8. Event-Study Estimates of the Effect of Automation Potential Interacted with High-

Exposure Group on Hourly Wages: Coefficients on 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡  

 
Note: The figure plots the estimated coefficients on three-way interaction between high-exposure group, automation 

potential, and each calendar time dummy, 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡 , via Eq. (1) with hourly wages as the dependent 

variable. The estimates are adjusted for a linear trend interacted with automation potential for each group categorized 

by their COVID exposure during the pre-pandemic period. The regressions are weighted by employment in 2019. All 

models include a unit (i.e., the combination of industry-occupation) fixed effect, time fixed effect, and industrial 

production index. N=21,281 (1,637 units × 13 time periods). Base period is October 2019. Standard errors are clustered 

at the industry-occupation level and the confidence intervals are at 95% level. We apply different criteria for defining 

the high-exposure group indicator, 𝐷ℎ𝑖𝑔ℎ, across panels (a) to (d) (see the note in Figure 3). 
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Figure A9. Employment Trends in Highly Exposed and Easily Automatable Jobs  

(Low industry wage premium sector vs High industry wage premium sector) 

 

Source: Local Area Labor Force Survey (LALFS). 

Note: The figure shows the employment levels of highly exposed and easily automatable jobs compared to other jobs 

in each industrial sector, categorized by the level of the pre-pandemic industry wage premium. The number of 

employees is standardized to a value of 100 as of October 2016. 
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Table A1. COVID-19 Exposure and Automation Probability by Occupation (KSCO 2-digit) 

Occupation Title Physical 

Proximity 

Teleworkability Automation 

Probability 

COVID 

Exposure 

Automation 

Feasibility 

Construction, Electricity and Production Related 

Managers 

0.251 0.387 0.062 Low Low 

Legal and Administrative Professionals 0.309 0.846 0.186 Low Low 

Information and Communication Professionals and 

Technicians 

0.205 0.994 0.219 Low Low 

Professional Services Management 0.240 0.954 0.222 Low Low 

Administration, Marketing Management 0.192 0.888 0.242 Low Low 

Culture, Arts and Sports Professionals 0.427 0.737 0.259 Low Low 

Science Professionals 0.182 0.682 0.289 Low Low 
Sales and Customer Service Managers 0.308 0.797 0.332 Low Low 

Engineering Professionals and Technicians 0.363 0.315 0.458 Low Low 

Senior Officials 0.287 1 0.487 Low Low 
Business and Finance Professionals 0.221 0.895 0.498 Low Low 

Legal Clerk 0.375 0.750 0.597 Low Low 

Administration and Accounting 0.335 0.741 0.631 Low Low 
Customer Service 0.446 0.581 0.769 Low High 

Sales Representatives 0.342 0.786 0.920 Low High 

Financial Clerk 0.390 0.586 0.933 Low High 

Education 0.741 0.944 0.070 Low Low 
Transport and Leisure Service 0.770 0.354 0.695 Low Low 

Sales Workers (Mobile/Door to Door/Street) 0.700 0.489 0.968 Low High 

Skilled Agricultural Occupations 0.366 0.032 0.596 Low Low 
Elementary Workers 

(Agriculture/Forestry/Fishery/Other Services) 

0.428 0.116 0.621 Low Low 

Elementary Workers (Production) 0.473 0 0.653 Low Low 

Skilled Forestry Occupations 0 0.053 0.740 Low High 
Machine Operators (Textile/Shoe) 0.378 0 0.772 Low High 

Elementary Workers (Cleaning/Guard) 0.387 0.063 0.788 Low High 

Metal Coremakers Related Trade Occupations 0.270 0 0.794 Low High 
Skilled Fishery Occupations 0.309 0.132 0.830 Low High 

Machine Operators (Metal/Nonmetal ) 0.342 0 0.852 Low High 

Machine Operators (Electrical/Electronic) 0.357 0 0.856 Low High 
Machine Operators (Food processing) 0.388 0 0.880 Low High 
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Occupation Title Physical 

Proximity 

Teleworkability Automation 

Probability 

COVID 

Exposure 

Automation 

Feasibility 
Wood and Furniture and Related Trade Occupations 0.426 0.091 0.883 Low High 

Machine Operators (Chemical) 0.406 0 0.915 Low High 

Textile, Clothing and Leather Related Trade 

occupations 

0.357 0.132 0.937 Low High 

Machine Operators (Wood/Printing/Others) 0.365 0 0.940 Low High 

Health, Social Welfare 0.758 0.305 0.210 High Low 

Personal Service 1 0.239 0.480 High Low 
Electric and Electronic Related Trade Occupations 0.585 0.016 0.560 High Low 

Information and Communications Technology Related 

Occupations 

0.477 0 0.590 High Low 

Other Technical Occupations 0.669 0.038 0.642 High Low 
Security 0.710 0.259 0.685 High Low 

Cooking and Food Service 0.714 0.087 0.705 High High 

Driving and Transportation 0.610 0.057 0.706 High High 
Elementary Workers (Construction/Mining) 0.652 0 0.709 High High 

Transport and Machine Related Trade Occupations 0.543 0 0.763 High High 

Construction and Mining Related Trade Occupations 0.616 0.020 0.783 High High 
Machine Operators (Machine Production) 0.485 0 0.794 High High 

Elementary Workers (Transportation) 0.588 0.248 0.810 High High 

Food Processing 0.586 0 0.840 High High 

Elementary Workers (Household Helpers/Sales) 0.644 0.036 0.851 High High 
Sales Workers (Store/Rental) 0.682 0.082 0.886 High High 

Source: Authors’ calculation. 

Note: The table reports the scores by occupation for the three metrics—physical proximity, teleworkability, and automation probability—at the KSCO 2-

digit level. Physical proximity score is based on U.S. O*NET survey. Teleworkability score is based on the remote work index developed by Dingel and 

Neiman (2020). The original score of physical proximity and teleworkability is rescaled to [0, 1]. Automation probability by occupation is based on Kim 

(2015) and Frey and Osborne (2017). See Section Ⅱ for details of each index. Occupations are classified as having high COVID exposure if the physical 

proximity score is above the employment-weighted median, and the teleworkability score is less than or equal to the employment-weighted median. All 

occupations that do not fall into the high-exposure group are classified as the low-exposure group. Occupations are considered as those with high (low) 

automation feasibility if the automation probability is higher than or equal to (less than) 0.7.  
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Table A2. Event-Study Estimates of the Effect of Automation Potential Interacted with the High-

Exposure Group on Employment: Coefficients on 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡 (for selected periods) 

 

grouping criteria for Dhigh : 

(1) 

ppo > p50 

& teleo ≤ p50 

(2) 

ppo > p50 

& teleo ≤ p40 

(3) 

ppo > p60 

& teleo ≤ p50 

(4) 

ppo > p60 

& teleo ≤ p40 

Dhigh × Autoo × D2018.10 
-0.011 -0.014 -0.020 -0.023 

(0.019) (0.017) (0.020) (0.019) 

Dhigh × Autoo × D2019.4 
0.001 0.007 -0.002 0.005 

(0.016) (0.015) (0.017) (0.016) 

Dhigh × Autoo × D2020.4 
-0.062*** -0.051*** -0.068*** -0.056*** 

(0.019) (0.018) (0.021) (0.020) 

Dhigh × Autoo × D2020.10 
-0.040** -0.031* -0.050*** -0.041** 

(0.019) (0.018) (0.019) (0.017) 

Dhigh × Autoo × D2021.4 
-0.051** -0.027 -0.062** -0.039 

(0.025) (0.024) (0.026) (0.025) 

Dhigh × Autoo × D2021.10 
-0.071** -0.049* -0.084*** -0.062** 

(0.030) (0.026) (0.030) (0.026) 

Dhigh × Autoo × D2022.4 
-0.075** -0.053** -0.093*** -0.072*** 

(0.030) (0.025) (0.030) (0.025) 

Dhigh × Autoo × D2022.10 
-0.084*** -0.064*** -0.102*** -0.083*** 

(0.029) (0.020) (0.029) (0.019) 

Control variables     

Industrial production √ √ √ √ 

Unit fixed effect √ √ √ √ 

Time fixed effect √ √ √ √ 

Observations 21,411 21,411 21,411 21,411 

𝑅2 0.236 0.236 0.238 0.238 

Note: The table reports the estimated coefficients on three-way interaction between high-exposure group, automation 

potential, and each calendar time dummy, 𝐷ℎ𝑖𝑔ℎ × 𝐴𝑢𝑡𝑜𝑜 × 𝐷𝑡, for a selected period from the event study model (Eq. 

(1)). The estimates are adjusted for a linear trend interacted with automation potential for each group categorized by 

their COVID exposure during the pre-pandemic period. The regressions are weighted by employment in 2019. All 

models include a unit (i.e., the combination of industry-occupation) fixed effect, time fixed effect, and industrial 

production index. N=21,411 (1,647 units × 13 time periods). Base period is October 2019. Standard errors are 

clustered at industry-occupation level. ***p< 0.01, **p< 0.05, *p< 0.1. We apply different criteria for defining the 

high-exposure group indicator, 𝐷ℎ𝑖𝑔ℎ, across columns (1) to (4) (see the note in Table 1).  
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Table A3. Estimation Results of Eq. (1) with Hourly Wages 

(Imposing only two periods: pre and post-COVID-19)  

 

grouping criteria for Dhigh : 

(1) 

ppo > p50 

& teleo ≤ p50 

(2) 

ppo > p50 

& teleo ≤ p40 

(3) 

ppo > p60 

& teleo ≤ p50 

(4) 

ppo > p60 

& teleo ≤ p40 

Dhigh × Dpost-COVID 0.000 -0.003 0.003 0.001 

(0.006) (0.006) (0.006) (0.005) 

Autoo × Dpost-COVID -0.022*** -0.022*** -0.022*** -0.021*** 

(0.004) (0.004) (0.004) (0.004) 

Dhigh × Autoo × Dpost-COVID -0.003 -0.011* -0.007 -0.015*** 

(0.007) (0.006) (0.006) (0.005) 

Control variables     

Industrial production √ √ √ √ 

Unit fixed effect √ √ √ √ 

Time fixed effect √ √ √ √ 

Observations 21,281 21, 281 21, 281 21, 281 

𝑅2 0.366 0.366 0.366 0.365 

Note: The table reports the estimation results of Eq. (1) with hourly wages as the dependent variable, replacing the 

calendar time variable with only one dummy variable indicating post-COVID-19 period. The estimates are adjusted 

for a linear trend interacted with automation potential for each group categorized by their COVID exposure during the 

pre-pandemic period. The regressions are weighted by employment in 2019. All models include a unit (i.e., the 

combination of industry-occupation) fixed effect, time fixed effect, and industrial production index. N=21,281 (1,637 

units × 13 time periods). Base period is October 2019. Standard errors are clustered at industry-occupation level. 

***p< 0.01, **p< 0.05, *p< 0.1. We apply different criteria for defining the high-exposure group indicator, 𝐷ℎ𝑖𝑔ℎ, 

across columns (1) to (4) (see the note in Table 1).  


